Problem description and hypotheses testing in Artificial

Intelligence!

Paul Mc Kevitt and Derek Partridge?

ABSTRACT

There are two central problems concerning the methodology and foundations of
Artificial Intelligence (AI). One is to find a technique for defining problems in Al
The other is to find a technique for testing hypotheses in Al. There are, as of now,
no solutions to these two problems. The former problem has been neglected because
researchers have found it difficult to define Al problems in a traditional manner.
The second problem has not been tackled seriously, with the result that supposedly
competing Al hypotheses are typically non-comparable. If we are to argue that our
AT hypotheses do have merit, we must be shown to have tested them in a scientific
manner. The problems, and why they are particularly difficult for Al are discussed.
We provide a software engineering methodology called EDIT (Experiment Design
Implement Test) which may help in solving both problems.

1 INTRODUCTION

One of the most serious problems in Artificial Intelligence (AI) research is describing
and circumscribing AI problems. Unlike traditional computer science problems,
problems in AI are very hard to specify, never mind solve (see [1], p. 53-87).
Take, for example, the problem of natural language processing in AI. The problem
of building a program, P, to understand any natural language utterance which is
passed to P is very difficult. There will always be some word, or utterance structure,
or relationship between utterances, which the program will not understand. In any
event, it is hard to circumscribe the problem, as there are so many words and
sentence structures, and it would take a long time to specify all of these. This point
is elaborated with more detail by Mec Kevitt in [2]. Also, Wilks in [3] (p. 131)
says, “However, if there is any validity at all in what I called the circumscription
argument, then this is not so, for a natural language cannot be viewed usefully as
a set of sentences in any sense of those words. The reason for this, stated briefly
and without detailed treatment given in [4] and [5], is that for no sequence of words
can we know that it cannot be included in the supposed set of meaningful sentences
that make up a natural language.”

!This research has been funded in part by U S WEST Advanced Technologies, Denver,
Colorado, under their Sponsored Research Program.

2The authors’ address is Department of Computer Science, University of Exeter, GB Exeter
EX4 4PT, EC. E-mail: {pmc,derek}Qcs.exeter.ac.uk

However, it is possible to limit the problem of natural language processing by
taking a specific domain and have a system which only accepts utterances within
a prescribed domain. Take the problem of building a natural language interface
which answers questions about the UNIX operating system. Such a program, called
OSCON, is proposed by Mc Kevitt in [6]. Yet, even in this simplified case the
difficulty of describing the problem, and testing solutions to it, remains. It is hard
to define what sort of questions people will ask as there are so many of them. Al
researchers tend to try and predict what sort of questions people “might” ask and
develop a system to cater for these. The question we would like to ask here is, “Is
there any better method of defining AI problems rather than just, a priori, deciding
on a few of the specific components of the problem?”

A second problem arises out of the first, when we do not limit our goal to a
few prespecified examples, and that is how to test a solution to an AI problem if
such a potential solution is found. Today, the test of solutions to Al problems is
the implementability test; i.e. if a program can be implemented and demonstrated
to solve some selected examples of the problem then that program is considered a
good one. This is, of course, no test at all. If Al is a science then there needs to be
some method for testing or experimenting with programmed solutions rather than
just implementing and demonstrating them. We take a quote from Partridge in [1]
(Preface) which emphasizes the point, “Al is a behavioral science; it is based on
the behaviour of programs. But it has not yet come to grips with the complexity of
this medium in a way that can effectively support criticism, discussion, and rational
argument - the requisites of scientific ‘progress’ are largely missing. Argument there
is, to be sure, but it is all too often emotionally driven because rational bases are
hard to find.” This leads us to ask the question, “Is there any better method than
just implementation and demonstration which tells us if an AI hypothesis or theory
is correct?

We believe that the questions we ask here are central to the methodology and
foundations of Al, and answers to the questions need to be found. Otherwise, there
will be little disciplined progress in the development of Al systems and the science

of Al

2 DEVELOPING AI PROGRAMS

Computer science has already developed techniques for describing problems. Pro-
grams have been developed to aid programmers in developing and testing software
for specific domains. Practical software engineering tools such as CASE (Computer
Assisted Software Engineering) products are being used today (see [7]). CASE tools
are very useful for building computer software for limited domains, yet not very
useful for tackling problems outside their scope. For example, there are very few
CASE tools which would be useful for tackling the problem of building a machine
translation system for translating Swahili into Chinese.

Methodologies for the development of computer software have also been defined.
Partridge in [1] (p. 91-96) argues for the a Run-Debug-Edit methodology which is

later modified to RUDE (Run-Understand-Debug-Edit) in [8]. RUDE is a software
development methodology for the design of, mainly, AI programs. It is also pointed
out by Partridge in [1] that the RUDE methodology may be useful for traditional
computer science problems too. This methodology calls for a discipline of incre-
mental program development where programs are run and, if they fail on input, are
edited and rerun. Partridge and Wilks in [8] (p. 369) say, “Essentially what we
shall propose is a disciplined development of the ‘hacking” methodology of classical
AT We believe that the basic idea is correct but the paradigm is in need of substan-
tial development before it will yield robust and reliable AI software.” The problem
with RUDE is that it is tedious, and takes a long time, as the programmer is just
hacking piecemeal at solving the problem without really knowing what the problem
is. There is no specific goal toward which the program or programmer converges.

Another methodology called SAV (Specify-And-Verify), coined by Partridge in
[9], calls for formal specification of problems, and formal verification of the subse-
quent algorithm. The SAV approach is advocated by Dijkstra, Gries, and Hoare in
[10], [11], and [12] respectively. The use of formal techniques in proving programs
correct for real world complex problems in computer science has proven difficult.
One of the problems with Artificial Intelligence (AI) programs is that, as we’ve said,
they are very difficult to specify. The application of proof logics to the intricacies of
complex programs is too tedious and too complex. The technique has only become
useful for small, simple programs.

Both RUDE and SAV only ensure that a program is developed for a particular
specification. There is no guarantee that the specification is correct or solves the
real world problem at hand for which it is intended.

3 THE EDIT METHODOLOGY

EDIT (Experiment-Design-Implement-Test) is a software development
methodology which attempts to integrate elements of the SAV and RUDE method-
ologies. EDIT incorporates experimentation as an integral component. This is
particularly useful in the AI problem domain which incorporates the added diffi-
culty of the researcher not knowing how to describe a problem while trying to solve
it. Briefly, EDIT has the following stages:

1. Experiment: Experiment(s) (E) are conducted to collect empirical data on
the problem. This data can be stored in log file(s) (L).

2. Design: A design® (D), or specification, can be developed from L together
with relevant theories of the program domain.

3. Implement: The description, or specification, is implemented (I) as a com-
puter program (P).

3By “design” we mean any reasonable description whether it be in English, Hindi, Gaelic, logic,
algorithmic form, or assembly code.

4. Test: P is sent around the cycle and tested by placing it through E again.
However, this time E involves P whereas initially E did not involve a program.
The cycle is iterated until a satisfactory P is found.

The system developer(s) initially use(s) E to help define the problem, and suc-
cessively use(s) E to develop and test P. In the initial stage E does not involve a
program. However, each subsequent E involves a partially implemented P until the
final P is decided upon. EDIT will always terminate after E and before I in the
cycle. The EDIT cycle is shown in Figure 1 below.

EXPERIMENT / TEST

DESIGN

IMPLEMENT

Figure 1: EDIT (Experiment Design Implement Test) Cycle.

At the experiment stage (E) an experiment is conducted to gather data on the
problem or the quality of the current potential solution, P,. Say, for example, the
problem is to develop a natural language program which answers questions about
computer operating systems like UNIX. Then, valid experimentation software would
be a program which enables a number of subjects (S) to ask questions about UNIX,
and an expert to answer these questions. An example setup for this experiment
would be the Wizard-of-Oz* paradigm. In fact, an augmented Wizard-of-Oz tech-
nique is used where a program (P) can be inserted and used in the interaction with
the subject. A number of S and Wizard(s) (W) from varying backgrounds may be
used in the experiment. Of course, the greater the number of S and W the more

*A Wizard-of-Oz experiment is one where subjects interact with a computer through typed
dialogue at a monitor and are led to believe that they are conversing with the computer. For
example, in the case of a Wizard-of-Oz test for a natural language interface, a subject’s utterances
are sent to another monitor where a “Wizard”, or expert, sends back a reply to the subject
monitor.

comprehensive the data collected will be. Also, there may be groups of S and W
rather than just a single S and single W. Information on exchanges between S and
W is logged in a log file (L) for later inspection. S and W operations are flagged
in the file. Such an experiment is described with greater detail by Mc Kevitt and
Ogden in [13] and the implications of that experiment are described by Mc Kevitt
in [2].

At the design stage (D), L from E is analysed and inspected. In the initial stage
the data here gives a snapshot description of the problem and how it is charac-
terised. Further stages of the cycle will give snapshots of how well the problem is
characterised in the current P. An analysis of L will give a picture of the information
needed in various components of a program, such as knowledge representation, user
modeling, and reasoning components. Many researchers and domain experts from
various backgrounds may be called in to analyse L and determine what aspects
of the software need to be developed. In fact, the type of researcher brought in
will determine the type of program eventually developed and the best of all worlds
would be to have a wide span of researchers/experts from different backgrounds.
The job of the researchers is to develop algorithms with the help of the data and to
specify these algorithms in some manner.

At the implementation (I) stage the algorithms or designs in D are implemented.
These designs may be implemented in any programming language (P) that the
implementers find most appropriate. Finally, the implemented program is sent
back to E again and tested. Then, a new cycle begins.

During the initial state of the EDIT manifestation described here, S and W
interact over the problem and the data is logged in L. Data may be collected for a
specific task within a domain, or the whole domain itself. Each successive run of E
involves the incorporation of P, which tries to answer questions first and if it fails W
steps in while P restarts. The cycle may be operated in real time, or batch mode.
In batch mode the experimentation component would involve a number of batched
questions which are collected from S, and processed by P, with W interrupting where
P fails.

The EDIT cycle continues until the program performs satisfactorily to the re-
quirements of the designers. The designer(s) may wish P to perform satisfactorily
only 50% of the time, or 80% of the time. The success or failure of P will be deter-
mined at design time, D, when the L is analysed. L will show where P has failed
and where it has passed the test. W entries will show up why P did not work and
will indicate what components of P need to be updated. In the case of natural
language question answering W entries might show up the fact that certain types
of question are not being answered very well, or at all. Therefore, W entries would
indicate how P needs to be augmented in principle to solve a recurring pattern of
failure. W entries could be analysed for such recurring patterns. In effect, what is
happening here is that P is “learning” by being investigated and augmented in the
same way as a mother might teach her child noticing the child’s failure to complete

certain tasks®.

The success of P is measured by the number and type of answers P can give, and
the number of answers P gets correct. The measure of capability and correctness is
determined by inspection of L. During the development of P the initial coding may
need to be recoded in some manner as data collected later may affect P’s design.

There are many forms in which the EDIT cycle may be manifested. The ex-
perimentation stage may involve experiments other than the Wizard-of-Oz type.
Another experiment might involve an observer sitting beside the subject during
testing and helping the subject with the program as he/she uses it and also restart-
ing the program itself.

The design stage and inspection of L may involve only one, or a number of de-
signers. These designers may know much about the domain, and little about design,
or vice versa. Experts and good designers may both be used at the design stage.
Also, E could consist of a set of experts with different points of view and different
backgrounds. E is in the spirit of Partridge and Wilks in [8] (p. 370), “Rather
than the implementation of an abstract specification, we propose exploration of
the problem space in a quest for an adequate approximation to the NLP problem.”
Hence, EDIT may consist of many manifestations of the methodology, yet, the basic
methodology involves developing and testing through experimentation.

EDIT is a useful technique in that it allows the iterative development of systems
and gives feedback on how to design an Al system as it is being developed. Sharkey
and Brown in [14] (p. 282) point out that the belief that an AI system can be
constructed first, and then tested later, as argued by Mc Kevitt in [2], is not the
way to go. Sharkey and Brown show that (1) an AI system takes a long time to build,
and it may be wrong at the beginning, and (2) an Al theory, and its implementation
in the final state, may not be configured in a way that allows psychological testing.

It is important to point out here that the idea of using a Wizard for testing Al
programs has a parallel in standard software engineering (see, for example, [15]). In
the testing of standard software, top-down testing schemes use dummy modules or
“program stubbs”. The modules can be implemented with the following constraints:
(1) Exit immediately if the function to be performed is not critical, (2) Provide a
constant output, (3) Provide a random output, (4) Print a debugging message so
that the programmer knows the module is entered, (5) Provide a primitive version
of the final form of the module. Yourdon in [15] points out that in theory top-down
testing could be done with only the main program and with all the lower-level
modules implemented as stubs. However, he notes that in practice this would be
clumsy. The same holds true for the Wizard-of-Oz experiment: an initial analysis
of data might be one where most of the answers are given by the Wizard and only
a few are handled by the system. This would be clumsy in practice as the Wizard
would end up answering most of the time and the system would only respond to a
few utterances here and there.

5This analogy was provided in personal communication by Brendan Nolan of University College

Dublin (UCD).

Pressman in [16] (p. 508) discusses the use of stubs and points out that subordi-
nate stubs can be replaced one at a time with actual modules. Tests are conducted
as each module is integrated. On the completion of each test another stub is re-
placed with a real module. Also regression testing may be conducted where all,
or some, of the previous tests are rerun to ensure that new errors have not been
introduced.

4 THE SCIENCE OF Al

Now that we have described our position on a methodology for developing good
algorithms we shall move on to the problem of testing them. There needs to be
some technique for testing if the algorithm works. Today, the test of Al theories is
one where the programs, embodying those theories®, are implemented, and demon-
strated to work, over a few selected examples. This, however, is not a test at all, as
any Al theory, or hypothesis, can be implemented. At most, researchers tackle the
problem of testing Al systems in a weak sense by showing that they work for a few
examples.

One of the problems with Al today is that it is not appreciated as a science
and has no scientific test methodology. Narayanan in [19] (p. 46-47) points out,
“It can be argued that the criterion of implementability is vacuous at the level of
the Church-Turing thesis”. The thesis basically says that any process which can
be described by an algorithm can be implemented on a computer. Thus, any Al
theory which can be described by an algorithm can be implemented on a computer,
and hence all Al theories are valid no matter what they say. Sharkey and Brown in
[14] (p. 278) also point out this problem: “To say that a theory is implementable is
simply to say that it can be expressed in the form of a computer program which will
run successfully”, and suggest that a solution needs to be found (p. 280), “Another
question we would like to raise here is this: At what point in implementation do
we decide that there are too many patches to accept that the running program
is actually a test of a theory.” Sutcliffe in [20] argues for more empiricism and
says, “I see the use of norming studies and other techniques from psychology as
being relevant to AL” EDIT calls for not just implementability but also for the
implementation to work on experimentation over real data. Also, EDIT moves
forward on helping to solve the problem of how to check whether an Al theory
is valid. Narayanan in [19] (p. 48) points out, “In any case, even if a criterion of
complexity for AT programs (theories) can be found, there still remains the suspicion
that no criterion exists for determining whether an Al theory is true or accurate.”
EDIT provides a criterion for the testing of theories embodied in programs by the
inspection of log files.

There have been many arguments as to whether AI is, or is not, a science (see
[21], [22]). Schank in [23] brings up the question as to whether Al is a technology of
applications or a science. He points out that researchers have taken two directions,

5We do not make any strong claims here as to the relationship between programs and theories.
However, this issue is discussed in [17], [18], and [3].

the scientists interested in working on problems like the brain or more neat logic
problems, and the applications people working on building real practical systems.

Bundy in [24] calls AT an “engineering science”. He says that it consists of
the development of computational techniques and the discovery of their properties.
He argues that Al is exploratory programming where one chooses a task that has
not been modelled before and writes a program to implement it. On the other
hand Dietrich in [25] (p. 224) argues that Al is a science and says, “Then, I will
suggest a new theoretical foundation, and argue that adopting it would provide a
clear, unequivocal role for programs: they would be controlled experiments, and Al
would become a science.” He points out that such experiments can be operated over
natural systems such as ecosystems, and populations such as ant colonies. He says
(p. 231), “In the science of intelligent systems, therefore, computer programs would
have a definite role: they would allow scientists to experiment with hypotheses
about the nature of intelligence”.

Sparck Jones in [26] (p. 274) says that Al is engineering and points out that “...
Al experiments are engineering experiments serving the designs of task systems, i.e.
of artefacts.” However, although we would agree with Sparck Jones in the sense
that AI programs can be tested and redesigned by such experiments we would argue
that AI hypotheses can also be tested with experiments such as those argued for in
EDIT. Such experiments might be scientific ones, rather than engineering ones.

Let’s assume that Al is a science. One of the problems is then to decide what
the methodology of this science is. Narayanan in [21] (p. 164) brings up the point
nicely, “The relationship between AI and cognitive psychology is strong. Does
that mean that AI theories must conform to the same methodological rigour as
psychological theories? If not, then a clear methodology must be provided for
constructing and testing Al theories, otherwise AI might end up being a completely
speculative subject, more akin to science fiction than science.” We must also ask
the question of how to test hypotheses in Al if it is a science.

EDIT acts as methodology for testing hypotheses in AI where such hypotheses
may be solutions to parts of problems. The advantage of the Wizard-of-Oz technique
incorporating W, is that if P fails for reasons other than the hypothesis then the
W can step in, keeping P alive, so to speak. Meanwhile, no data is lost in the
current experiment dialogue. Of course, the log file marks where W interrupts.
During testing as far as S is concerned the program has never failed as S does not
necessarily know that W has intervened. The data from the testing phase can be
logged in a file and system developers can then observe where the system failed,
and where the W interfered. This information will be used in updating the system
and any theory which the system represents.

EDIT addresses the problem brought out by Narayanan in [19] (p. 44) where he
says, “The aim of this paper, apart from trying to steer well clear of terminological
issues, such as the distinction between ‘science’ and ‘study’, is to demonstrate that
unless Al is provided with a proper theoretical basis and an appropriate method-
ology, one can say just about anything one wants to about intelligence and not be
contradicted; unless Al is provided with some reasonable goals and objectives little

of current Al research can be said to be progressing.” It is believed that EDIT
might be the methodology that Narayanan asks for.

We would like to point out that EDIT is compatible with the methodologies of
three philosophies of science: (1) the narrow inductivist, (2) the Hempel approach,
and (3) the Popper approach. The ‘narrow inductivist conception of scientific in-
quiry’ (see [27]) is one which follows: (a) observation and reasoning of all the facts,
(b) analysis and clarification of these facts, (c¢) inductive derivation of generalisa-
tions from them, and (d) further testing of the generalisations. This is in accord
with EDIT when used in the sequence, Experiment-Design-Implement where log
files are observed, and a program is developed from them.

However, Hempel in [27] argues that this type of scientific inquiry is not useful,
and his approach is to develop hypotheses as tentative answers to a problem under
study, and then subject them to empirical test. Hempel argues that the hypothesis
must be testable empirically and that even if implications of the hypothesis are
false under testing, the hypothesis can still be considered true. Hypotheses can
be modified under experimentation until a limit is reached whereby the theory
has become too complex and a simpler theory should be sought. Again, EDIT is
compatible with Hempel’s test ([27]) of Al systems as scientific hypotheses. EDIT
can allow the AT scientist to have an hypothesis, a priori, (D) and place it into the
cycle at I where it will be passed to E. If the program P fails at E then the log file
must be analysed to see why it failed. If the hypothesis has failed then P can be
modified and tested again.

Popper in [28] argues that scientific hypotheses must be developed and if they
fail a scientific test then they must be thrown away and a new hypothesis developed.
There is no room for hypothesis modification. Also, there must be a test which can
show the hypothesis to be false. EDIT can allow scientific testing in the Popperian
framework where again an hypothesis is formulated at D, is implemented at I, and
is then tested at E. If the hypothesis fails then a new one must be developed and
placed into the cycle at D again.

Marr in [29] describes two types of theory. The first type (type I) of theory is
one where one uses some technique to describe the problem under analysis. Marr
refers to Chomsky’s notion of “competence” theory for English syntax as following
this approach. The point is that one should describe a problem before devising
algorithms to solve the problem. The second type (type II) of theory is one where
a problem is described through the interaction of a large number of processes. He
points out that the problem for Al is that it is hard to find a description in terms of
a type I theory. Most Al programs have been type II theories. The EDIT technique
enables the development of both types of theory in Marr’s terms. A type I theory
can be developed in terms of developing an initial complete description (starting at
D) and then implementing it (at I) and testing it (at E). Also, a type II theory can
be developed by starting at E stage and iteratively developing the description D of
the complete complex process.

Marr in [30] defines a three-level framework within which any machine carrying
out an information processing task is to be understood:

Computational theory (Level 1): The goal of the computation and the logic of
how it can be carried out.

Representation and algorithm (Level 2): The implementation of the
computational theory and the representation for the input and output. Level
2 also involves the algorithm for the transformation.

Hardware implementation (Level 3): The physical realisation of the represen-
tation and algorithm.

EDIT can be described in terms of Marr’s framework where level 1 is the level
at which D is completed, although D does not necessarily ask for a logic. Level 2
is also conducted at D. Level 3 is conducted at the I stage. Marr does not discuss
experimentation in his three level framework.

EDIT is an attempt to address the problem brought forth by Narayanan in [21]
(p. 179) where he says, “What we need here is a clear categorization of which edits
lead to ‘theory edits’, as opposed to being program edits only. It is currently not
clear in the ATl literature, how such a categorization might be achieved. Al does not
have the sort of complexity measure which would help identify when the theory, as
opposed to the program, should be jettisoned in favour of another theory.” Using
EDIT an inspection of L should show up, in many cases, where a program has failed
because of an hypothesis failure, or because of other reasons, and hence there will
be distinct implications for the theory and the program. Also, Narayanan in [21] (p.
181) says, “But given the above comments, it appears that there can, currently at
least be no scientific claims for claiming that one Al theory is better than another
and that AT is making progress, simply because the conceptual tools for measuring
one theory against another, and so for measuring the progress of Al are missing.”
We believe that EDIT may be a step along the road to such conceptual tools. It
may be the case that EDIT has a lot to say in the development of foundations for
AT as a science rather than a technology (see [21], [22]).

5 COMPARING EDIT TO RUDE

EDIT is not just a rearrangement and renaming of RUDE. The difference is that
EDIT offers a means of convergence on a solution. EDIT is a significant refine-
ment which we expect will be widely (although not universally) applicable in Al
The difference between EDIT and RUDE is that the algorithms are developed in
conjunction with data describing the problem rather than from what the problem
“might” be. Too often in the field of Al there are attempts at deciding, a pri-
ori, what a problem is without any attempt to analyse the problem in depth. As
was pointed out earlier one of the problems with developing Al programs is that
it is very difficult to specify the problem. One solution to that might be to collect
data on the problem, rather than algorithms being concocted from hopes, wishes
and intuition. The second major difference is that experimentation involves testing
software over real data in the domain. Also, by using the Wizard-of-Oz technique

the testing phase breaks down less as the wizard keeps the system going. We argue
that this is important because if a test fails then data can be lost due to temporal
continuity effects. Failure happens a lot while testing AI programs. For example, if
one is testing a natural language interface, with an hypothesis for solving reference
in natural language dialogue, then if the test fails the continuation of that dialogue
may never happen, and data will be lost.

The problem with RUDE is that it does not include any goal as part of the
process of development; only the update of a program. We argue here that E must
be included to produce log files which measure how close P is to the goal that needs
to be achieved. EDIT can be considered a more “tied down” version of RUDE where
it is clearer what the problem is, and how well P is solving the problem. In fact
Partridge and Wilks in [8] (p. 370) say, “What is needed are proper foundations
for RUDE, and not a drift towards a neighbouring paradigm.” Also, Partridge and
Wilks in [8] (p. 370) point out a recognition of the need for convergence, “The key
developments that are needed are methodological constituents that can guide the
exploration since a random search is unlikely to succeed.”

The EDIT cycle is conducted until the implementation performs satisfactorily
over a number of tests. The EDIT cycle enables the iterative development of a
system through using the problem description itself as part of the solution process.
EDIT is not just an hypothesis test method, but is also a method by which the reason
for failure of software is logged and a method where that reason does not cause data
loss. EDIT is useful for the development of software in an evolutionary way and is
similar to those techniques described in [31]. Again, 100% reliability is very difficult
to guarantee but we believe that problem description and implementation through
experimentation will lead to better implementations than either RUDE or SPIV on
their own.

EDIT is like the general methodology schemes proposed by researchers who are
developing expert systems. The stages for the proper evolution of an expert system
are described by Hayes-Roth et al. in [32]:

o IDENTIFICATION: determining problem characteristics

CONCEPTUALIZATION: finding concepts to represent knowledge

FORMALIZATION: designing structures to organize knowledge

IMPLEMENTATION: formulating rules that embody knowledge

TESTING: validating rules that embody knowledge

This is in the spirit of EDIT where, of course, identification is similar to E and
conceptualization and formalization to D, and implementation to I. However, with
EDIT, E is involved in both identification and testing and we argue that this is the
way to go about testing if P is to meet the problem head on.

EDIT is currently being used in the development of Al software which answers
natural language questions about computer operating systems. An initial computer

program was developed called OSCON (see [33], [6], [34], and [35]) which answers
simple English questions about computer operating systems. To enhance this re-
search it was decided that an experiment should be conducted to discover the types
of queries that people actually ask. An experiment has been conducted to acquire
data on the problem. More details on the experiment and its implications are given
in [2].

There are probably AI domains where EDIT will fit nicely and other domains
which will not — i.e. are not open to simple data collection. For example, theories
of knowledge representation could only be developed with rather indirect inferences
from data collection. We do not wish to stress that EDIT will be used for all Al
domains but that it may be useful in some.

6 CONCLUSION

It is pointed out here that the EDI methodology can provide a solution to the
development and testing of programs in Artificial Intelligence (AI), a field where
there are no sound foundations yet for either development, or testing. EDIT is
compatible with scientific test philosophies at each end of a scale, and if Al is to be
a science, then a technique like EDIT needs to be used to test scientific hypotheses.
A sound methodology will reduce problems of how to compare results in the field.

EDIT may help in the endeavour of transforming Al from an ad-hoc endeavour
to a more well-formed science. EDIT provides a methodology whereby Al can be
used to develop programs in different domains and experts from those domains can
be incorporated within the design and testing of such programs.

We leave you with a quote from Partridge and Wilks in [8] (p. 370), “A RUDE-
based methodology that also yields programs with the desiderata of practical soft-
ware — reliability, robustness, comprehensibility, and hence maintainability — is
not close at hand. But, if the alternative to developing such a methodology is the
nonexistence of Al software then the search is well motivated.” EDIT is part of
such a search.

7 ACKNOWLEDGEMENTS

We would like to thank Simon Morgan, Richard Sutcliffe and Ajit Narayanan of
the Computer Science Department at the University of Exeter and Brendan Nolan
from University College Dublin for providing comments on this work.

8 REFERENCES

1. Partridge, Derek. Artificial Intelligence: applications in the future of software
engineering. Halsted Press, Chichester: Ellis Horwood Limited, 1986.

2. Mc Kevitt, Paul. Data acquisition for natural language interfaces. Memoranda in
Computer and Cognitive Science, MCCS-90-178, Computing Research Laboratory,

Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces, NM 88003-0001,
1990b.

3. Wilks, Yorick. One small head: models and theories. In “The foundations of
Artificial Intelligence: a sourcebook”, Partridge, Derek and Yorick Wilks (Eds.),
pp- 121-134. Cambridge, United Kingdom: Cambridge University Press, 1990.

4. Wilks, Yorick. Decidability and Natural Language. Mind, N.S. 80, 497-516, 1971.
5. Wilks, Yorick. Grammar, meaning and the machine analysis of language. Lon-
don: Routledge and Keegan Paul, 1972a.

6. Mc Kevitt, Paul. The OSCON operating system consultant. In “Intelligent Help
Systems for UNIX — Case Studies in Artificial Intelligence”, Springer-Verlag Sym-
bolic Computation Series, Peter Norvig, Wolfgang Wahlster and Robert Wilensky
(Eds.), Berlin, Heidelberg: Springer-Verlag, 1990a. (Forthcoming)

7. The Byte Staff. Product Focus: Making a case for CASE. In Byte, December
1989, Vol. 14, No. 13, 154-179, 1989.

8. Partridge, Derek and Yorick Wilks. Does AI have a methodology different from
software engineering?. In “The foundations of Artificial Intelligence: a sourcebook”,
Partridge, Derek and Yorick Wilks (Eds.), pp. 363-372. Cambridge, United King-
dom: Cambridge University Press. Also as, Does Al have a methodology which is
different from software engineering? in Artificial Intelligence Review, 1, 111-120,
1990b.

9. Partridge, Derek. What the computer scientist should know about AI — and
vice versa. In “Artificial Intelligence and Cognitive Science '90”, (this volume)
Springer-Verlag British Computer Society Workshop, Mc Tear, Michael and Cre-
aney, Norman (Eds.), Berlin, Heidelberg: Springer-Verlag, 1990.

10. Dijkstra, E.-W.. The humble programmer. Communications of the ACM, 15,
10, 859-866, 1972.

11. Gries, D.. The science of programming. Springer-Verlag, NY, 1981.

12. Hoare, C.A.R.. The emperor’s old clothes. Communications of the ACM, 24,
2, 75-83, 1981.

13. Mc Kevitt, Paul and William C. Ogden. Wizard-of-Oz dialogues in the computer
operating systems domain. Memoranda in Computer and Cognitive Science, MCCS-
89-167, Computing Research Laboratory, Dept. 3CRL, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001, 1989.

14. Sharkey, Noel E. and G.D.A. Brown. Why AI needs an empirical foundation.
In “AlI Principles and applications”, M. Yazdani (Ed.), 267-293. London, UK:
Chapman-Hall, 1986.

15. Yourdon, Edward. Techniques of program structure and design. Engelwood
Cliffs, New Jersey: Prentice-Hall, Inc., 1975.

16. Pressman, Roger S. Software engineering: a practitioner’s approach. McGraw-
Hill: New York (Second Edition), 1987.

17. Bundy, Alan and Stellan Ohlsson. The nature of Al principles: a debate in the
AISB Quarterly. In “The foundations of Artificial Intelligence: a sourcebook”, Par-
tridge, Derek and Yorick Wilks (Eds.), pp. 135-154. Cambridge, United Kingdom:
Cambridge University Press, 1990.

18. Simon, Thomas W. Artificial methodology meets philosophy. In “The founda-
tions of Artificial Intelligence: a sourcebook”, Partridge, Derek and Yorick Wilks
(Eds.), pp. 155-164. Cambridge, United Kingdom: Cambridge University Press,
1990.

19. Narayanan, Ajit. Why Al cannot be wrong. In Artificial Intelligence for Society,
43-53, K.S. Gill (Ed.). Chichester, UK: John Wiley and Sons, 1986.

20. Sutcliffe, Richard. Representing meaning using microfeatures. In “Connection-
ist approaches to natural language processing”, R. Reilly and N.E. Sharkey (Eds.).
Hillsdale, NJ: Earlbaum, 1990.

21. Narayanan, Ajit. On being a machine. Volume 2, Philosophy of Artificial Intel-
ligence. Ellis Horwood Series in Artificial Intelligence Foundations and Concepts.
Sussex, England: Ellis Horwood Limited, 1990.

22. Partridge, Derek and Yorick Wilks. The foundations of Artificial Intelligence:
a sourcebook. Cambridge, United Kingdom: Cambridge University Press, 1990a.
23. Schank, Roger. What is Al anyway?. In “The foundations of Artificial In-
telligence: a sourcebook”, Partridge, Derek and Yorick Wilks (Eds.), pp. 1-13.
Cambridge, United Kingdom: Cambridge University Press, 1990.

24. Bundy, Alan. What kind of field is AI?. In “The foundations of Artificial
Intelligence: a sourcebook”, Derek Partridge and Yorick Wilks (Eds.), p. 215-222.
Cambridge, United Kingdom: Cambridge University Press, 1990.

25. Dietrich, E. Programs in the search for intelligent machines: the mistaken
foundations of AL In “The foundations of Artificial Intelligence: a sourcebook”,
Derek Partridge and Yorick Wilks (Eds.), 223-233. Cambridge, United Kingdom:
Cambridge University Press, 1990.

26. Sparck Jones, Karen. What sort of thing is an Al experiment. In “The foun-
dations of Artificial Intelligence: a sourcebook”, Partridge, Derek and Yorick Wilks
(Eds.), pp. 274-285. Cambridge, United Kingdom: Cambridge University Press,
1990.

27. Hempel, C.. Philosophy of natural science. Prentice Hall, 1966.

28. Popper, K. R.. Objective knowledge. Claredon Press, 1972.

29. Marr, David. Al: a personal view. In “The foundations of Artificial Intelli-
gence: a sourcebook”, Derek Partridge and Yorick Wilks (Eds.), 99-107. Cambridge,
United Kingdom: Cambridge University Press, 1990.

30. Marr, David. Vision. Freeman, 1982.

31. Connell, John L. and Linda Brice Shaffer Structured rapid prototyping: an evolu-
tionary approach to software development. Engelwood Cliffs, New Jersey:Yourdon-
Press Computing Series, 1989.

32. Hayes-Roth, F., D.A. Waterman and D.B. Lenat Building expert systems. Read-
ing, MA: Addison-Wesley, 1983.

33. Mc Kevitt, Paul. Formalization in an FEnglish interface to a UNIX database.
Memoranda in Computer and Cognitive Science, MCCS-86-73, Computing Research
Laboratory, Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces, NM
88003-0001, 1986.

34. Mc Kevitt, Paul and Yorick Wilks. Transfer Semantics in an Operating System

Consultant: the formalization of actions involving object transfer. In Proceedings
of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87),
‘ol. 1, 569-575, Milan, Italy, August, 1987.

35. Mec Kevitt, Paul and Zhaoxin Pan. A general effect representation for Oper-
ating System Commands. In Proceedings of the Second Irish National Conference
on Artificial Intelligence and Cognitive Science (AI/CS-89), School of Computer
Applications, Dublin City University (DCU), Dublin, Ireland, European Commu-
nity (EC), September. Also, in “Artificial Intelligence and Cognitive Science ’89”,
Springer-Verlag British Computer Society Workshop Series, Smeaton, Alan and
Gabriel McDermott (Eds.), 68-85, Berlin, Heidelberg: Springer-Verlag, 1989.

