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Abstract: The volume of multimedia assets in collections is growing exponentially, and the retrieval
of information is becoming more complex. The indexing and retrieval of multimedia content is
generally implemented by employing feature graphs. Feature graphs contain semantic information
on multimedia assets. Machine learning can produce detailed semantic information on multimedia
assets, reflected in a high volume of nodes and edges in the feature graphs. While increasing
the effectiveness of the information retrieval results, the high level of detail and also the growing
collections increase the processing time. Addressing this problem, Multimedia Feature Graphs
(MMFGs) and Graph Codes (GCs) have been proven to be fast and effective structures for information
retrieval. However, the huge volume of data requires more processing time. As Graph Code
algorithms were designed to be parallelizable, different paths of parallelization can be employed to
prove or evaluate the scalability options of Graph Code processing. These include horizontal and
vertical scaling with the use of Graphic Processing Units (GPUs), Multicore Central Processing Units
(CPUs), and distributed computing. In this paper, we show how different parallelization strategies
based on Graph Codes can be combined to provide a significant improvement in efficiency. Our
modeling work shows excellent scalability with a theoretical speedup of 16,711 on a top-of-the-line
Nvidia H100 GPU with 16,896 cores. Our experiments with a mediocre GPU show that a speedup of
225 can be achieved and give credence to the theoretical speedup. Thus, Graph Codes provide fast
and effective multimedia indexing and retrieval, even in billion-scale use cases.

Keywords: indexing; retrieval; explainability; semantic; multimedia; feature graph; Graph Code

1. Introduction and Motivation

Whether in social networks, media, or medicine, many industries collect and pro-
cess a growing volume of multimedia content objects (i.e., representations of real-world
scenes, such as videos, images, textual descriptions, audio recordings, or combined ob-
jects). Statista [1] describes an increase in the volume of photos taken with a smartphone,
from 660 billion in 2013 to 1.2 trillion in 2017. When comparing the volume of titles on
video streaming services from fall 2021 [2] and summer 2022 [3], annual growth can be
observed. Research data sets grow with similar rates, as the National Library of Medicine
shows. Founded as Open-i in 2012 with 600,000 [4] assets, the collection grew to 1.2 mil-
lion in 2022 [5]. Similar rates are shown in Figure 1; in one minute on the Internet [6],
695,000 Instagram [7] stories are shared, 500 hours of YouTube [8] content is uploaded, and
197 million emails are sent.

Mechanisms for the efficient indexing and fast retrieval of these multimedia content
objects are essential to manage this large volume of information. Cloud computing [9]
and big data technologies [10] enable the storage and processing of these amounts of
multimedia content objects. Recent improvements in machine [11] learning, such as deep
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learning [12], enabled the automated extraction of features from the raw multimedia content
object by employing object recognition [13], face identification, and further methods. The
increasingly high resolution in multimedia content objects, such as 32-bit audio recording,
8K video recording, and 200-megapixel smartphone cameras, allows the extraction of
features with a high level of detail (LOD) from the content of multimedia content objects.
All this extracted feature information can be efficiently organized and indexed by graph-
based technologies. In previous work [14], we introduced the Multimedia Feature Graphs
(MMFG), Graph Codes (GCs), and Graph Code algorithms. Evaluations showed that they
are fast and effective technologies for Multimedia Information Retrieval (MMIR) [15] and
that Graph Codes can perform better as graph databases. According to [16], the acceptable
response time for users is around one second. However, information retrieval in large
multimedia collections and a high LOD still result in processing times above the margin
of one second. Previous experiments show a potential speedup of the execution times of
the Graph Code algorithm through the parallelization of Graph Code algorithms. One of the
remaining research questions is how to efficiently parallelize Graph Code algorithms and
whether this can lead to a speedup.

Figure 1. A Minute on the Internet in 2021 [6].

To answer this question, in this paper, we introduce several approaches to scale Graph
Code algorithms. The scaling approaches explore horizontal and vertical scaling. While
vertical scaling aims to employ massively parallel processing hardware, such as Graphic
Processing Units (GPUs) [17], horizontal scaling aims at distributed computing systems,
such as Apache Hadoop [18]. Section 2 summarizes the current state of the art and related
work. Section 3 discusses the mathematical and algorithmic details of parallel Graph Code
algorithms and their transfer to parallel systems. The models presented show significant
potential to speed up Graph Code processing on GPUs. These models have been used for
the proof-of-concept implementation given in Section 4. Finally, the evaluation in Section 5
shows the detailed results of the experiments on its efficiency. Section 6 concludes and
discusses future work.



Big Data Cogn. Comput. 2023, 7, 70 3 of 22

2. State of the Art and Related Work

This section offers a synopsis of current techniques and standards in the field of
Multimedia Information Retrieval, as well as a summary of related research. Initially,
a foundation is established on existing approaches, followed by the introduction of the
Graph Code [14] concepts, an efficient and performant indexing technique. The scaling
approaches are based on parallelization technologies and, hence, a brief overview of
applicable parallelization options is given. Finally, in this section, the starting points for
scaling Graph Code processing are summarized.

2.1. Information Retrieval

Information retrieval [19] aims to find information in large information collections.
Multimedia Information Retrieval particularly targets collections with image, video, text, or
audio assets (i.e., multimedia content objects). MMIR systems are designed to support these
use cases. To search for information, the main component is a search engine. The search
engine has an information database containing the list of multimedia assets in the collection
and also an index of them. The index contains metadata about the assets. Semantic metadata
connect the features and make them machine processable. Metadata can be supplied or
generated by feature extraction. In order to organize features, graph-based methodologies
and structures are frequently employed, given that feature information relies on information
nodes and the connections that exist between these nodes [20]. The increasing number of
features requires a mechanism to structure features, detect inconsistencies, and calculate
the relevance of each feature, which we describe next.

2.2. Multimedia Features and Multimedia Feature Graphs

The Multimedia Feature Graph (MMFG) [21] is a weighted and directed graph [22],
whose nodes and edges represent features of multimedia assets. The Generic Multimedia
Annotation Framework (GMAF) [23] is an MMIR system for multimedia assets that uses
MMFGs as an index and access method. GMAF provides a flexible plugin architecture that
allows the processing of various multimedia asset types to extract features that are stored
as metadata in the MMFG. The extracted features are contributed to the MMFG, which
can be further processed. Extensions of MMFGs have led to semantic analysis, such as Se-
mantic Multimedia Feature Graphs (SMMFGs) and Explainable SMMFGs (ESMMFGs) [24].
Despite these extensions, the graph-based structure of MMFGs remains and can lead to
slow processing times. When the LOD of the assets increases, the number of elements in the
MMFG also increases, which further increases the processing times. To address this, Graph
Codes were introduced for faster indexing [14]. Therefore, it is important to experiment
with an improved processing model to reduce processing times. This is outlined in the
next subsection.

2.3. Graph Codes and Algorithms

Graph Codes [14,25] are a 2D transformation of a multimedia feature graph that is
encoded using adjacency matrix operations [26]. GCs have been shown to be more efficient
for similarity and recommendation searches than graph-traversal-based algorithms. Graph
Codes represent the labels of feature graph nodes and edges in the form of vocabulary terms.
Based on the adjacency matrix of such a feature graph, these are used as row and column
indices. The elements of the matrix represent the relationships between the vocabulary
terms. The type of the edge in the graph is encoded as the value of the matrix element.
Figure 2 illustrates a simple example of a multimedia feature graph (see Figure 2a), a
detailed section from the graph (Figure 2b), its corresponding GC in a table representation
(Figure 2c), and the GC matrix GCex (Figure 2d).

GCs contain a dictionary dictGC of feature vocabulary terms (FVT) and represent the
relationships between these terms using the matrix field mi,j. A similarity metric triple
MGC = (MF, MFR, MRT) has been defined for GCs. The feature metric MF is based on the
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vocabulary, the feature relationship metric MFR is based on the possible relationships, and
the feature relationship type metric MRT is based on the actual relationship types.

Figure 2. Multimedia features represented as a Graph Code index (a–d) [27].

Semantic Graph Codes (SGCs) [23] are an extension of GCs that incorporate additional
semantic structures using annotation with semantic systems such as RDF, RDFS, ontologies,
or Knowledge Organization Systems [28–30]. This additional semantic information can
help to bridge the semantic gap between the technical representations of multimedia feature
graphs and their human-understandable meanings.

With the introduction of semantics to the MMFGs in [24], we introduced additional
metrics to improve the efficiency and effectiveness of Graph Codes for MMIR. First, the
feature discrimination MDIS is defined as the difference in the number of nonzero Graph
Code fields for two feature vocabulary terms of a given Graph Code or Semantic Graph Code.
TFIDF [31] is a numerical statistic used in natural language processing to evaluate the
importance of a word in a document. An adapted TFIDF measure for Graph Codes can use
MDIS to reveal how representative a term is for a single document—in this case, an SGC.
The Semantic Graph Code collection corresponds to the TFIDF documents. With MREL, it
can be used to define a threshold for a collection to exclude less relevant features from the
retrieval process. Alternatively, MREL can be used to weight terms according to the use
case. This requires the pre-processing of the Graph Codes by removing the non-relevant
vocabulary terms. This step needs to be performed when the relevance threshold is changed,
or whenever a multimedia content object is added to or removed from the collection.

Introduced in [14], the basic algorithm for the comparison and order of Graph Codes in
a collection is listed in pseudocode below.

for each GC in collection
--- parallelize ---
calculate the intersection matrices
of GC_Query and~GC

--- parallelize each ---
calculate M_F of GC_Query and GC
calculate M_FR of GC_Query and GC
calculate M_RT of GC_Query and GC
--- end parallelize each ---

compare
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--- end parallelize~---
order result list according to
value of M_F

value of M_FR where M_F is equal
value of M_RT where M_F and M_FR are equal

return result list

Experiments with a proof-of-concept (POC) implementation of the algorithm showed
that parallel instances can process individual parts of a Graph Code collection in less time
on multicore CPUs compared to a single instance. Compared to a single instance with an
execution time of 635 s, 16 instances could process the same volume of data in 65 s [32].
Therefore, we explored approaches for the parallel processing of Graph Codes.

2.4. Parallel Computing

The scaling of algorithm processing can either be achieved by higher-performance
computing resources or by executing parts of the algorithm in parallel. Higher performance
is usually an upgrade of hardware, which is called vertical scaling. Parallel computing can
be achieved in many ways. In a single computer, multiple processing units can exist in the
form of multicore Central Processing Units (CPUs) [33] or coprocessors such as Graphics
Processing Units (GPUs) [17] or Field-Programmable Gate Arrays (FPGAs) [34]. While
multicore CPUs work in Multi-Instructions Multiple Data (MIMD) [35] fashion, GPUs
usually work in a Single-Instruction Multiple Data (SIMD) [35] method. Although MIMD is
suitable for general purpose computing, it is limited for massive parallelization [36] (p. 181).
SIMD is optimal for massive parallelization, but only in cases where the same instructions
are being applied to the data. Both concepts can be found in modern processors, e.g.,
Apple M-series [37] and A-series [38], Nvidia G200 [36] (p. xii), CPU AVX extension [39].
Additionally, systems can contain multiple processing units, such as multi GPUs. State-of-
the-art approaches [40–42] mainly apply GPUs for performance improvements.

Another option for in-system parallelization is distributed computing. Instead of
spreading the operations on the data to different processing units in the system, the data
and the instructions are distributed to many systems. This is called horizontal scaling. Many
frameworks are available to support coordination in distributed computing. Frameworks
such as Hadoop [18] or TensorFlow [43] can be used to coordinate parallel execution on
large clusters of computers.

On a high level, a task to parallelize can be classified as Task-Level Parallelization
(TLP) [33] or Data-Level Parallelization (DLP) [33]. While tasks in TLP can be general
purpose and very different from each other, in DLP, the same operation is applied to
different data, similar to a matrix multiplication. Given Flynn’s taxonomy [35], for the
parallel computation of multiple data, SIMD or MIMD processors can be used. TLP works
well with MIMD processors, while, for DLP, SIMD processors are more suitable. As
mentioned above, modern processors cannot simply be categorized as SIMD or MIMD,
because they often have features of both categories. Multi-Core CPUs such as an Intel
i9 [39] work as MIMD but have SIMD extensions such as AVX. GPUs operate as SIMD, but
Nvidia CUDA [44] GPUs can also operate as MIMD. Hence, a detailed analysis is needed
to find the most suitable processor for a certain task.

To take advantage of the potential for parallel computing, applications and algorithms
need to be modified. The method of algorithm decomposition [45] (p. 95) can be applied
to identify sections that can run in parallel. Recursive decomposition searches for options
for a divide-and-conquer approach. Data decomposition looks for parts of the algorithm
that apply the same operation to parts of the data to be processed. Further techniques exist,
and they can be applied in hybrid. The result of the algorithm decomposition is a Task
Dependency Graph (TDG). A TDG is a directed acyclic graph that signifies the execution
process of a task-oriented application. In this graph, the algorithm’s tasks are depicted
as nodes, while edges symbolize the interdependencies among tasks. This relationship
denotes that a task can only commence its execution once its preceding tasks, represented
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by incoming edges, have been successfully completed. The TDG can be used to organize
an algorithm for the targeted system.

According to [46], the efficiency gain of parallel executions is defined as the speedup
S, which is the ratio of the sequential execution time ts and the execution time on n
processors tp:

S =
ts

tp
(1)

Amdahl’s [47] and Gustafson’s [48] laws can be used to calculate the theoretical
speedup, based on the fractions of the program, which can be parallelized or not, and the
number of execution units. While a detailed discussion of the speedup of our modeled
algorithms follows in Section 3.4, the previously given pseudocode can be used as a first
approximation: the not parallelizable part of the program s is the order result list, which is
around 10% of the program, so the parallelizable part p is 90%. According to Gustafson’s
law, the speedup S on 10 cores N would be 9.1.

S = (1− p) + p× N = (1− 0.9) + 0.9× 10 = 9.1 (2)

However, the following decomposition of the algorithm to calculate and order the
Graph Code metrics will produce a TDG. The characteristics of the tasks can indicate which
execution model provides the best acceleration yields.

2.5. Discussion and Open Challenges

Summarizing this body of scientific research, Graph Codes have shown promising
performance compared to graph traversal operations. Although Graph Codes are faster than
comparable methods, processing large multimedia collections and a high LOD result in
optimizable processing times. Previous experiments with the algorithm show options for
efficiency gains by parallelization, but the full application of parallelization remains an
open challenge. This includes the creation of models for parallel Graph Code algorithms, the
transfer to available technology, and the evaluation of the corresponding algorithms and
models. To parallelize Graph Code processing, various options are available. For vertical
scaling, GPUs are an option, but a detailed analysis is necessary. The decomposition
techniques can be applied to characterize the tasks of the algorithm. The resulting TDG
indicates which hardware fits best for the parallelization of the algorithm.

3. Modeling and Design

For our modeling work, we employed the User-Centered System Design [49] by
Norman and Draper and the Unified Modeling Language (UML) [50]. The central use
case for our modeling work is similarity search, as shown in Figure 3. The objective of
similarity search is to discover objects that bear a resemblance to a designated query object,
adhering to a specific similarity criterion provided. With the user in focus, we aimed for an
optimized user experience in terms of reducing runtimes for the implementation of the use
case. In the case of MMFGs and Graph Codes, in the first use case, Parallel Graph Code Metric
Calculation, the calculation of the metrics’ values for the query Graph Code GCquery and all
Graph Codes in the collection GCcoll is happening. In the use case Parallel Ordering, the list
of items and metrics is ordered by the highest similarity by comparing the metric values.
Parallel algorithms are explored for both steps.

In the following sections, we employ the described decomposition techniques for the
Graph Code algorithms and model different parallel approaches. The modeled approaches
are examined for their theoretical speedup and applicability to parallelization technologies.
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Figure 3. UML use case diagram for similarity search with parallel execution.

3.1. Parallel Graph Code Algorithms

The similarity search based on Graph Codes calculates the metric values for each Graph
Code GCi in the collection against the query Graph Code GCquery and orders the results.
The pseudocode of Section 2.3 describes the algorithm. We applied the decomposition
techniques (Section 2.4) to the algorithm and modeled a Task Dependency Graph (TDG).

Starting with the first step, the iteration over all items n in the Graph Code collection can
be decomposed by the divide-and-conquer method. As the individual metric calculations
do not have dependencies, they can be split into n parallel steps. Next, the calculation of
intersection matrices and metric calculation contain comparison of the elements in both
matrices. Hence, the data decomposition can be used, and each comparison step can be
done in parallel. In a consecutive step, the individual comparison results are used to
calculate the Graph Code metric values. The calculation of the three metric values could
also be parallelized, but compared to the rest of the algorithm, the number of instructions
is low and, therefore, the potential is also low. Finally, the ordering of the results can
be parallelized.

In summary, the decomposition identified three tasks:

• Task 1: Calculate the metrics for each pair of Graph Codes GCixGCquery (see Figure 4).
The metric calculation itself can be decomposed by the data decomposition method.

• Task 2: For each element in the dictionary and the matrix of GCquery, find the matching
elements in GCi and calculate the values according to the metrics (see Figure 5).

• Task 3: After the metrics are calculated, the result set should be ordered.

Compared to the parallelization points indicated in the pseudocode, the identified
tasks are different, as shown in Figure 6, where the initial version shows two parallel
parts (Figure 6a), and the new version shows the three decomposed tasks (Figure 6b).
Task 1 and Task 2 are part of the sub-use case Parallel Graph Code Metric calculation of the
use case similarity search. Task 3 maps to the use case Parallel Ordering of the use case
similarity search.

The identified tasks can, but do not need to, run in parallel, regardless of whether
the other tasks are sequential or parallel. Hence, different versions can be modeled. The
remainder of this section discusses different models.

Task 1, the iteration over the collection, is an obvious task to run in parallel and has
no interdependencies between each calculation of the metric, as shown in the TDG in
Figure 4. A metric calculation uses two Graph Codes as input. For a similarity search, one
of the inputs is the reference Graph Code GCquery, and the other is an element GCi from
the collection GCcoll . Each of these calculations can be executed independently and thus
arbitrarily in parallel. The calculated metric values will be stored in a result array; the
position is correlated with the position in the collection. The parallelization can be done
on thread-level parallelization and, therefore, run on multicore CPUs and GPUs, as well
as with distributed processing. Listing 1 shows the start and end of the parallelization for
Task 1 parallelization.
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Listing 1. Pseudocode of Task 1 parallelization.

1 −−− START TASK 1 −> TLP p a r a l l e l i s e −−−
2 for each GC in c o l l e c t i o n
3 −−− c a l c u l a t e the i n t e r s e c t i o n of GC_Query and~GC −−−
4 for each element in GC_Q−>VM
5 Check I n t e r s e c t i o n with GC_Q
6 C a lc u l a t e M_F, M_FR, M_RT from m_res array values
7 −−− END Task 1 TLP p a r a l l e l i z e −−−
8 order r e s u l t l i s t according to
9 value of M_F

10 value of M_FR where M_F i s equal
11 value of M_RT where M_F and M_FR are equal
12 return r e s u l t l i s t

Figure 4. TDG for Task 1 and Task 3 with the GCquery and the GCcoll as input.

Figure 5. TDG for task 2a and task 2b with the value matrices as input.
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Figure 6. Comparison of (a) initial and (b) new parallel parts of the Graph Code algorithm in pseu-
docode. Colored items show tasks to decompose.

For Task 2, finding intersections in the two matrices can be processed in parallel, but
the findings, as well as the check for the feature relationship metric and feature relationship
type metric, need to be stored in intermediate storage, as shown in Figure 5. This part of
Task 2 is named Task 2a. As a subsequent step, the storage is summed up and the values are
used for the calculation of the final metric values. This step is Task 2b. For large matrices
in the millions, due to the high LOD, summing up the values can be done in parallel with
reduction approaches [51]. Listing 2 shows the start and end of the parallelization in the
case of Task 2.

Listing 2. Pseudocode of Task 2 parallelization.

1 for each GC in c o l l e c t i o n
2 −−− c a l c u l a t e the i n t e r s e c t i o n of GC_Query and~GC −−−
3 −−− START TASK 2a −> SIMD p a r a l l e l i z e −−−
4 for each element in GC_Q−>VM
5 Check I n t e r s e c t i o n with GC_Q, s t o r e in m_res array
6 . . .
7 −−− END TASK 2a SIMD p a r a l l e l i z e −−−
8 −−− START TASK 2b −> TLP p a r a l l e l i z e
9 reduce m_res arrays

10 −−− END TASK 2b TLP p a r a l l e l i z e −−−
11 C a l cu l a t e M_F, M_FR, M_RT from m_res array values
12 order r e s u l t l i s t according to
13 value of M_F
14 value of M_FR where M_F i s equal
15 value of M_RT where M_F and M_FR are equal
16 return r e s u l t l i s t

The final Task 3, the ordering of the metrics, has a dependency on all preceding tasks
because it needs all the calculated metrics as input. The task itself can be done with parallel
versions of QuickSort [52] or RadixSort [53].

Task 1 can run in parallel with a sequential metric calculation, or in parallel, as
described with Task 2, as shown in Figure 7. Executing Task 1 in sequence and only
running Task 2 in parallel is also possible, as shown before in Figure 5. The following
Listing 3 shows the start and end of the tasks and the type of parallelization for all the tasks.
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Figure 7. Task Dependency Diagram for Tasks 1–3.

Listing 3. Pseudocode of Task 1, 2, and 3 parallelization.

1 −−− START TASK 1 −> TLP p a r a l l e l i s e −−−
2 for each GC in c o l l e c t i o n
3 −−− c a l c u l a t e the i n t e r s e c t i o n of GC_Query and~GC −−−
4 −−− START TASK 2a −> SIMD p a r a l l e l i z e −−−
5 for each element in GC_Q−>VM
6 Check I n t e r s e c t i o n with GC_Q, s t o r e in m_res array
7 . . .
8 −−− END TASK 2a SIMD p a r a l l e l i z e −−−
9 −−− START TASK 2b −> TLP p a r a l l e l i z e

10 reduce m_res arrays
11 −−− END TASK 2b TLP p a r a l l e l i z e −−−
12 C a l cu l a t e M_F, M_FR, M_RT from m_res array values
13 −−− END Task 1 TLP p a r a l l e l i z e −−−
14 −−− START TASK 3 −> TLP p a r a l l e l i z e −−−
15 order r e s u l t l i s t according to
16 value of M_F
17 value of M_FR where M_F i s equal
18 value of M_RT where M_F and M_FR are equal
19 −−− END TASK 3 TLP p a r a l l e l i z e −−−
20 return r e s u l t l i s t

Overall, the initial algorithm can be broken down into three tasks, and each task
can be parallelized or in sequence. In the next section, we define algorithms from the
different combinations.

3.2. Definitions

Similarity search can be processed through the three consecutive tasks, each of which
can be parallelized or sequential. Hence, the different combinations result in several
algorithms, which are defined as follows:

• For reference, we define the sequential algorithm without parallel steps as Sequen-
tial (SEQ).

• We define the (thread-level) parallelization of Task 1 only as Parallel GC Com-
pute (PC).

• The parallel computation of Graph Code metrics, as described as Task 2a, is defined as
Parallel Metric Sequential Reduce (PM).

• The combination of Tasks 2a and 2b is defined as Parallel Metric Parallel Reduce
(PMPR).

• For very large Graph Codes, it may be useful to use PM alone, but it can be combined
with PC, which we define as Parallel GC Compute with Parallel Metric (PCPM).

• Accordingly, PC in combination with PMPR is defined as Parallel GC Compare with
Parallel Metric Parallel Reduce (PCPMPR).

• Finally, if parallel sorting is also applied, we define the combination with PC as
Parallel Compute and Parallel Sort (PCPS).
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• Consequently, PC with PMPR and PS Parallel Compute Parallel Metric Parallel
Reduce Parallel Sort is defined as (PCPMPRPS).

• If parallel sorting is also applied, we define the combination with PC as Parallel
Compute and Parallel Sort (PCPS).

• Respectively, all parallelized tasks are defined as Parallel Compute Parallel Metric
Parallel Reduce Parallel Sort (PCPMPRPS).

Figure 8 illustrates the possible combinations and the resulting algorithms. The
individual Tasks 2b and 3 alone are not useful; therefore, they are colored in gray.

Figure 8. Combination overview of tasks and the resulting algorithms.

Based on the described models of parallel Graph Code algorithms, we will discuss the
transfer to modern processors and show the potential speedup.

3.3. Potential Parallelization on Modern Processors

Modern processors are designed as multicore processors. They can execute instructions
in parallel, but the execution model differs. While MIMD processors have an individual
instruction counter for each core, SIMD processors share an instruction counter. A shared
instruction counter means that every core executes all statements for all paths of input
data. If a branch of the code (e.g., if statement) is not executed in one parallel path, the core
omits the instruction step and cannot execute other instructions. This effect is called thread
divergence. The branching characteristics of parallel tasks impact the utilization of a SIMD
processor and, hence, the efficiency of the algorithm. However, SIMD processor designs
can have many more cores and can achieve massive parallelization.

The characteristics of the modeled parallel Graph Code algorithms are both advanta-
geous and disadvantageous for parallelization. The individual tasks have a low degree
of dependency and show a gather pattern, which means that inputs can be grouped and
processed individually, and each output can be stored in an individual place. This indicates
the applicability for SIMD. On the other hand, the calculation of metrics implies the creation
of intersections of two Graph Codes. The number of intersections depends on the size and
similarity of the Graph Code. This indicates that thread divergence is likely.

The algorithm PC can be parallelized at thread level, which means that every calcu-
lation can be put into a thread and executed in parallel. This is suitable for both types
of processors: multicore CPUs (MIMD) and modern GPUs (SIMD). As Task 2 algorithms
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constitute data-level parallelization, it loads the data once and processes each item. Data-
level parallelization is more suitable for GPUs, but in the case of heterogeneous Graph
Codes, thread divergence can limit the effectiveness. However, the low degree of depen-
dency allows for processing many calculations in parallel, employing all available cores.
Given a processor with 16,000 cores, such as the Nvida H100 [54], 16,000 Graph Code metric
calculations can be performed in parallel.

To reduce or even eliminate the possible performance impact of thread divergence,
the Graph Codes can be grouped by size. Executing same-size groups could reduce thread
divergence. This method has been used in similar cases [55]. Another approach is to employ
the previously described Feature Relevance [24]. Graph Codes with only relevant features
should increase the performance with a minimal loss of accuracy. The impact on parallel
Graph Code algorithms works as follows.

Depending on the vocabulary width (LOD) used in the MMFGs, the resulting Graph
Codes can be sparse or dense. With a high LOD, Graph Codes tend to be large and sparse.
For the calculation, this leads to many unnecessary comparisons to obtain the intersections
of two Graph Codes. For a similarity search, it is questionable to have many terms used in
only one Graph Code or in every Graph Code. By applying techniques such as TFIDF, the
density of the information in the resulting SMMFGs and the semantic Graph Codes increases.
The resulting semantic Graph Codes SGCs have similar dimensions and a similar number of
intersections. Both may be beneficial to the effect of thread divergence and, hence, to the
efficiency of parallel Graph Code algorithms.

A further approach for Task 2a could replace the search of corresponding feature vocab-
ulary terms in the Graph Code to compare with a lookup table, such as an inverted list [56].
This approach could be applied to the sequential and parallel versions of the algorithms.

A benefit of the modeled algorithms is that no more pre-processing is needed than
producing the Graph Codes. The approaches Semantic Graph Codes and inverted lists require
further pre-processing.

In summary, the characteristics of the parallel algorithm show high potential for
acceleration. In the next section, we deduce the theoretical speedup.

3.4. Theoretical Speedup

The performance of parallel Graph Code algorithms can be compared with the sequen-
tial version. The improvement is measured as speedup S, which is the ratio of parallel
to sequential runtime, where p is the number of processors around a problem of size n.
T∗(n) is the execution time of the best serial implementation and Tp(n) is the parallel
implementation. In this subsection, we will focus on the algorithm PC.

Sp(n) =
T∗(n)
Tp(n)

(3)

The calculation of the metric values is performed on a collection of Graph Codes GCcoll .
This corresponds to

GCcoll = {GC1, · · · , GCn} (4)

The value n corresponds to the number of Graph Codes in a collection GCcoll

n = |GCcoll | (5)

Each Graph Code has a variable word list dict with a length l corresponding to the
dimension of the Graph Code value matrix VM.

l = |dictGC| = dim(VMGC) (6)

Regarding the sequential metric computation of two Graph Codes GCq and GCi, the
runtime PSEQ can be mainly described by the sizes l of the respective Graph Codes with the



Big Data Cogn. Comput. 2023, 7, 70 13 of 22

following factors. For each element in the matrix of Graph Code GCq, the corresponding
values of Graph Code GCj must be searched and compared. lq as the number of elements in
the word list of the query vector GCq and corresponding lj is the length of the word list in
the vector to compare GCj.

PSEQ(GCq, GCj) = l2
q ∗ 2lj (7)

When calculating the metrics of a collection of Graph Codes GCcoll , the calculation is
performed for Graph Code GCq against each element in the collection. Hence, the calculation
happens n times, the number of Graph Codes in the collection. Since the GCs vary in length,
the individual runtimes are summed up.

PSEQ(GCq, GCcoll) =
n

∑
j=0

(l2
q ∗ 2lj) (8)

In consideration of the parallel algorithm, PC can now be divided by the number of
execution units (CPU cores or CUDA cores) c. This results in

PPC(GCq, GCcoll) =
PSEQ(GCq, GCcoll)

c
=

∑n
j=0(l

2
q ∗ 2lj)

c
, 1 ≤ c ≤ |GCcoll | (9)

By parallelizing the steps for each element of the Graph Code matrix GCq, this can be
divided among the number of execution units c. To form the sum, the buffer size l must
be calculated.

Looking at current top-end GPUs such as the Nvidia H100 with 16,896 cores,

PPC =
tSEQ

16,896
(10)

As measured in previously published experiments (source), the calculation of 720,000
Graph Codes took 635 s in an instance using a single thread. Hence, employing the parallel
algorithms could lead to a reduction in the processing time down to 0.038 s or a theoretical
speedup of 16.711.

PPC =
635s

16,896cores
= 0.038 s (11)

SPC =
635

0.038
= 16,711 (12)

Graph Codes and the modeled algorithms show high potential for massive parallel
processing. Next, we summarize the section and discuss the implementation and evaluation
of the algorithms.

3.5. Discussion

In this section, we present the conceptual details of parallel Graph Code algorithms,
their mathematical background and formalization, and the conceptual transfer of parallel
algorithms to processors. The application of the decomposition methods showed that the
Graph Code metric calculation is massively parallelizable. In theory, the only limiting factor
is the number of available cores and memory.

The algorithm variants show huge speedup potential on different multicore processor
systems. Considering an implementation for SIMD GPUs with a shared instruction counter,
the heterogeneity of Graph Codes in a collection could lead to the inefficient utilization of
GPU resources. We presented the options of grouping Graph Codes by size or homoge-
nization with TFIDF. As it is a theoretical examination, an implementation of the parallel
algorithm and an evaluation of the efficiency is needed.
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With regard to distributed computing, the algorithm could be used because Tasks 1
and 2 are without dependencies. If the collection is distributed, all nodes can calculate
their portions; only the final Task 3 (ordering) needs to be computed on one node with all
intermediate results. Implementing and evaluating this remains an open challenge.

For an evaluation of real performance, we decided to implement some variants of
the algorithms. To compare speedups on CPU and GPU, we decided to implement PC for
Threads and CUDA. In the case of a very high LOD, algorithms PM and PMPC could be
beneficial. To test their efficiency, they were implemented in CUDA. For a comparison of
ordering the result list (Task 3) on the GPU and CPU, PCPS was implemented for CUDA.
Our implementation is discussed in Section 4 and the evaluation results given in Section 5.

4. Implementation and Testing

To test the different algorithms, we implemented a proof-of-concept (PoC) application
to measure and compare execution times. The application flow follows the use case Query
by Example; thus, the processing times are similar to what a user would experience in a
real application. We used different hardware systems and software libraries. The algorithm
modeling showed high potential for parallel execution. Hence, we wanted to run the
algorithms on multicore CPUs and GPUs. For the multicore CPUs, we used the POSIX-
Threads library, and for GPUs, we selected the CUDA platform because it is used in
comparable research. The application and the algorithms were implemented in C/C++,
which allows portability and a reduced possible execution overhead of any interpreters
or intermediate frameworks. The application reads the Graph Code data initially from files
and stores it in the main memory. In case of CUDA, the data were transformed into a
simple data structure and transferred from the main memory to the GPU memory before
the calculation, and therefore before measuring the runtimes of the algorithms.

Different versions of the algorithms were implemented. An overarching comparison
between sequential, CPU parallel, and GPU parallel runtimes can be made with the algo-
rithm Parallel GC Compute PC. We implemented the algorithm in a sequential version,
CPU SEQ; a CPU POSIX-Threads version, CPU Parallel; and a CUDA parallel version,
CUDA Parallel. For the CPU parallel algorithm, the number of utilized cores can be set.
The CUDA implementation is optimized for maximum GPU utilization. For PC for CUDA,
each Graph Code similarity metric calculation is packaged in a parallel executable unit, a
kernel. Listing 4 shows parts of the kernel as a function declaration in lines 1–35. The
listing demonstrates the process flow for a number of Graph Codes (numberOfGCs), stored
at the pointer gcMatrixData (line 2) and gcDictData (line 2), accessible by helper arrays
gcMatrixOffsets, gcMatrixSizes, and gcDictOffsets (lines 3–4). First, the index of the Graph
Code in the collection is located with the CUDA thread model (line 6). Next, the values
gcQuery (line 4) and index, both containing the positions of the two Graph Codes to compare,
are used to access the data points in the corresponding arrays—for example, in line 11 or
line 14. The lines 19–34 show the metric calculation and the storage of the values in the
metrics array. The metrics array will be transferred from the GPU memory to the main
memory after execution, demonstrated in the function demoCalculateGCsOnCuda (lines
37–70), with the transfer in lines 65–67. This example also shows that most of the actual
calculation is done in the CUDA kernel and, hence, in a parallel way. The sequential part
of the algorithm is low, which is in line with the previously mentioned application of
Gustafson’s law and the theoretical speedup calculation.

For the sorting, we used sequential sorting and adapted CUDA-QuickSort [52] to
compare the metric values.

For the CUDA implementation, thread divergence can have a negative impact on
execution times, and because of the heterogeneity of Graph Codes, it is likely to happen. To
compare the differences, the application either loads a real dataset or generates an artificial
Graph Code.
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Listing 4. Partial code of the Parallel Graph Code metric calculation according to PC.

1 / * m e t r i c c a l c u l a t i o n * /
2 __global__ void cudaGcCompute ( unsigned short * gcMatrixData , unsigned i n t * gcDictData ,
3 unsigned i n t * gcMatr ixOffsets , unsigned i n t * gcMatrixSizes ,
4 unsigned i n t * gcDic tOf f se t s , i n t gcQuery , i n t numberOfGcs , Metr ics * metr i cs ) {
5
6 unsigned i n t index = threadIdx . x + blockIdx . x * blockDim . x ;
7 i f ( index >= numberOfGcs )
8 return ;
9

10 i n t sim = 0 ;
11 i n t elementsGc1 = s q r t f ( ( f l o a t ) gcMatr ixSizes [ gcQuery ] ) ;
12 i n t elementsGc2 = s q r t f ( ( f l o a t ) gcMatr ixSizes [ index ] ) ;
13
14 unsigned i n t o f f 1 = g c D i c t O f f s e t s [ gcQuery ] ;
15 unsigned i n t o f f 2 = g c D i c t O f f s e t s [ index ] ;
16
17 . . . / / Met r i c C a l c u l a t i o n
18
19 metr ics [ index ] . s i m i l a r i t y = 0 . 0 ;
20 metr ics [ index ] . recommendation = 0 . 0 ;
21 metr ics [ index ] . i n f e r e n c i n g = 0 . 0 ;
22 metr ics [ index ] . s i m i l a r i t y = ( f l o a t ) sim / ( f l o a t ) elementsGc1 ;
23 metr ics [ index ] . idx = index ;
24 i f ( num_of_non_zero_edges > 0) {
25 / * e d g e _ m e t r i c * / metr ics [ index ] . recommendation =
26 ( f l o a t ) edge_metric_count / ( f l o a t ) num_of_non_zero_edges ;
27 }
28 i f ( edge_metric_count > 0) {
29 / * e d g e _ t y p e _ m e t r i c * / metr ics [ index ] . i n f e r e n c i n g =
30 ( f l o a t ) edge_type / ( f l o a t ) edge_metric_count ;
31 }
32 metr ics [ index ] . compareValue = metr ics [ index ] . s i m i l a r i t y
33 * 100000 .0 f + metr ics [ index ] . recommendation
34 * 100 .0 f + metr ics [ index ] . i n f e r e n c i n g ;
35 }
36
37 Metr ics * demoCalculateGCsOnCuda ( i n t numberOfGcs ,
38 unsigned i n t dictCounter ,
39 unsigned short * d_gcMatrixData ,
40 unsigned i n t * d_gcDictData ,
41 unsigned i n t * d_gcMatrixOffsets ,
42 unsigned i n t * d_gcDictOffsets ,
43 unsigned i n t * d_gcMatrixSizes ,
44 i n t gcQueryPosit ion ) {
45 Metr ics * d _ r e s u l t ;
46
47 HANDLE_ERROR( cudaMalloc ( ( void * * ) &d_resul t , numberOfGcs * s ize of ( Metr ics ) ) ) ;
48
49 i n t gridDim = c e i l ( ( f l o a t ) numberOfGcs / 1 0 2 4 . 0 ) ;
50 i n t block = ( numberOfGcs < 1024) ? numberOfGcs : 1024 ;
51
52 cudaGcCompute<<<gridDim , block >>>(d_gcMatrixData ,
53 d_gcDictData ,
54 d_gcMatrixOffsets ,
55 d_gcMatrixSizes ,
56 d_gcDictOffsets ,
57 gcQueryPosition ,
58 numberOfGcs ,
59 d _ r e s u l t ) ;
60
61 HANDLE_ERROR( cudaPeekAtLastError ( ) ) ;
62 HANDLE_ERROR( cudaDeviceSynchronize ( ) ) ;
63
64 Metr ics * r e s u l t = ( Metr ics * ) malloc ( numberOfGcs * s i ze of ( Metr ics ) ) ;
65 HANDLE_ERROR( cudaMemcpy ( r e s u l t , d_resul t ,
66 numberOfGcs * s i ze of ( Metr ics ) , cudaMemcpyDeviceToHost ) ) ;
67 HANDLE_ERROR( cudaFree ( d _ r e s u l t ) ) ;
68
69 return r e s u l t ;
70 }

As memory management is different for POSIX threads and Nvidia CPUs, two meth-
ods of memory management have been created. The memory management modules
organize the data loaded in appropriate data structures in the main memory or GPU mem-
ory. For the execution time on GPUs, it is relevant if all the data are already present in the
GPU memory. Data transfers between the main memory and GPU memory add significant
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execution time. Our implementation is limited by the memory of the processor used, but
advanced strategies can be examined [42,57] in future research to overcome this limitation.

Compared to other CUDA implementations in similar fields, such as k-selection by
Johnson et al. [41], our implementation can be accomplished with simple means, since there
are no dependencies between the calculations, i.e., no intermediate states are synchronized
and exchanged.

The exemplary implementation can process large datasets, and the execution times
of different algorithms can be measured. In the next section, an evaluation of this PoC
is given.

5. Evaluation

The proof-of-concept implementation has been used to evaluate the performance
of the modeled algorithms, by employing widely recognized experimental techniques,
focusing on the effectiveness of metric computation processes. We conducted experiments
with the implementation of the algorithms described in Section 4 and performed them on
different hardware platforms. As a test dataset, we used Graph Codes generated from the
NIST Washington Post Corpus (WaPo) [58].

For our experiments, we used several CPU and GPU processors, listed in Table 1.
Unfortunately, a top-of-the-line CPU was not available for our experiments, but it is
mentioned for comparison.

Table 1. Hardware configurations of Central Processing Units (CPUs) and Graphical Processing Units
(GPUs) used for evaluation.

Device Class Low-End CPU Low-End GPU Medium CPU Medium GPU High-End CPU High-End
Desktop GPU

Top-of-the-Line
GPU for

Reference

Model name Jetson Nano Jetson Nano Intel Core i5 Nvidia GeFroce
GTX 1060 3 GB

AWS c6a.
48xlarge Nvidia RTX 3060 Nvidia H100

80 GB PCIe

Processor
ARM

Cortex-A57
MPCore

GM20B
TM660M-A2 i5-8500 GP106/GP106-

300-A1 AMD EPYC GA104 H100

Architecture ARMv8-A64-bit Maxwell I686/Coffee
Lake-S Pascal Zen Ampere Hopper

DRAM 4096 MB 4096 MB (shared) 16 GB 3 GB 384 GB 12 GB 80 GB

CPU/GPU-clock 1430 MHz 640 MHz
(921 MHz Boost) 3 GHz

1506 MHz
(1708 MHz

Boost)
Turbo 3.6 GZz

1320 MHz
(1777 MHz

Boost)

1830 MHz
(1980 MHz

Boost)

Cores 4 CPU cores 128 CUDA cores 6 CPU cores 1152 CUDA
cores 192 CPU cores 3584 CUDA

cores
16,896 CUDA

Cores

5.1. Scalability of Parallel Graph Code Algorithms

To measure a real-world speedup, we compared the runtime duration of the PC
algorithm on different processors. The duration of execution was measured for the part of
the metric calculation and for the entire processing, including the ordering of Graph Codes,
as shown in Table 2 and visualized in Figure 9. As expected, the algorithm scales with
input in an almost linear way. Tenfold the input takes tenfold the execution duration on
the same system. For example, the CPU Parallel without Sort for 10,000 Graph Codes takes
0.1 s and a ten-times greater value of 1.021 s for 100,000 Graph Codes.

The processors used are different in multiple characteristics, so the execution durations
cannot be compared one by one. However, they indicate that the CUDA CPU can process
the same number of Graph Codes in a fraction of the time. Given the theoretical speedup
of the algorithm PC explained in Section 3.4, it should primarily scale with the number
of cores. Hence, we sought to prove this. We measured the performance on different
CPUs and GPUs with a different number of cores. Again, the processors differed in clock
rates and speed, but the focus was on the number of processor cores and the scalability of
the algorithm.
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Table 2. Comparison of execution duration in seconds for Graph Code calculation and ordering for
Sequential (SEQ), CPU Parallel (PC), and CUDA Parallel (PC) of subsets of the WaPo dataset. Each
measured the time with and without sorting.

# GCs
CPU SEQ
without

Sort

CPU SEQ
with Sort

CPU Par
without

Sort

CPU Par
with
Sort

CUDA
Par

without
Sort

CUDA
Par

with
Sort

[s] [s] [s] [s] [s] [s]

100 0.005 0.005 0.002 0.002 0.003 0.003

1000 0.045 0.045 0.011 0.011 0.006 0.006

10,000 0.462 0.465 0.100 0.102 0.012 0.013

100,000 4.756 4.787 1.021 1.052 0.079 0.092

250,000 10.421 10.502 2.560 2.642 0.163 0.202

500,000 18.078 18.252 4.917 5.091 — * — *

728,618 21.942 22.210 7.195 7.462 — * — *

* out of memory.

Figure 9. Execution duration of algorithms of type Task 1.

The results of both experiments shown in Tables 3 and 4 provide evidence of the
theoretical speedup. Figure 10 shows the difference between the expected theoretical and
the measured speedup.

Table 3. Comparison of execution duration in seconds for Graph Code calculation and ordering for
(PC) on different CPUs.

10,000 50,000 100,000 200,000 400,000

Low-Level CPU (4 core) 0.461 s 2.338 s 4.793 s 9.798 s 19.770 s

Medium CPU (6 core) 0.102 s 0.516 s 1.053 s 2.098 s 4.088 s

High-Level CPU (192 core) 0.018 s 0.053 s 0.091 s 0.171 s 0.326 s

Table 4. Comparison of execution duration in seconds for Graph Code calculation and ordering for
(PC) on different GPUs.

10,000 50,000 100,000 200,000 400,000

Low-Level GPU (128 Core) 0.144 s 0.467 s 0.923 s - * - *

Medium GPU (1152 Core) 0.013 s 0.048 s 0.092 s 0.166 s - *

High-Level GPU (3584 Core) 0.004 s 0.015 s 0.030 s 0.053 s 0.110 s
* out of memory.
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Figure 10. Comparison of speedup.

5.2. Efficiency for High LOD

The mean number of features extracted from the WaPo collection is 39. We explored
the behavior for cases with a higher LOD, based on artificially created Graph Codes of the
same size. Therefore, we created Graph Codes with the same terms in the dictionary dictGC,
following the same dimensions, dim, of the Graph Code matrix GCex. To compare the results,
we measured the runtime duration for dim = 40 shown in Table 5 and dim = 1000 shown
in Table 6. By comparing the runtime duration of CUDA PC and CUDA PM for 100 Graph
Codes, for dim = 40, CUDA PC performs better, but at dim = 1000, CUDA PM performs
better. For the dim = 40, CUDA PC also performs well for larger Graph Code collections,
while CUDA PM and PMPR do not scale well. This behavior can be explained by the low
GPU utilization of the sequential performance of PM calculations. Future research could
examine whether the algorithm PCPMPR can perform better for a high LOD.

Table 5. Comparison of execution duration in seconds for Graph Code calculation for artificial Graph
Codes of dim = 40.

# GCs CPU SEQ CUDA PC CUDA PM CUDA PMPR
[s] [s] [s] [s]

100 0.105 0.044 0.096 0.034

1000 1.050 0.043 0.888 0.247

10,000 10.512 0.096 8.905 2.372

100,000 105.956 0.562 88.529 23.286

Table 6. Comparison of execution duration in seconds for Graph Code calculation for artificial Graph
Codes of dim = 1000.

# GCs CUDA PC CUDA PM CUDA PMPR
[s] [s] [s]

100 121.167 2.863 2.208

1000 387.565 28.334 21.502

5.3. Impact of Graph Code Heterogeneity

We explained the possible impact of heterogeneous Graph Codes on performance in
Section 3.3. To evaluate the impact with real-world data, we performed an experiment
and measured the runtime durations of CUDA PC with a subset of the WaPo dataset and
artificial data. For artificial data, we generated comparable Graph Codes of dim = 39. The
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results given in Table 7 and visualized in Figure 11 show that the heterogeneity of the input
data does not necessarily have a negative impact on the duration of the runtime.

Table 7. Comparison of execution duration in seconds for Graph Code calculation for artificial Graph
Codes of dim = 39.

# GCs CPU SEQ CPU PC CPU PC
[s] [s] [s]

100 0.098 0.022 0.010

1000 0.983 0.222 0.017

10,000 9.796 2.248 0.052

100,000 98.389 22.080 0.437

250,000 244.893 54.606 1.095

500,000 490.977 108.641 2.187

728,618 - - 3.194

Figure 11. Execution durations of real and artificial Graph Codes.

5.4. Summary

Our research focuses on the use case of similarity search in multimedia assets in
multimedia collections. We wanted to examine the user experience of a Query by Example
operation for large multimedia collections with a high LoD. High volumes and a high
LoD result in high processing durations. Our experiments show that the parallel Graph
Code similarity search can significantly reduce the execution duration. Our modeling and
implementation have been validated by showing that the algorithm execution duration
scales with the number of parallel processor cores. In our experiments, the PC algorithm
on a medium GPU (see Table 1) achieved a speedup of 225 compared to a sequential
execution on a medium CPU. These results lend clear support to the theoretical speedup
on top-of-the-line GPUs.

6. Conclusions and Future Work

In this paper, we explained the difficulties for multimedia information retrieval intro-
duced by growing multimedia collections and a high level of detail. Graph Codes are an
efficient method to process multimedia content objects for use cases of similarity search.
Processing large multimedia collections with sequential Graph Code algorithms still results
in processing durations beyond the user-friendly margin of one second. We researched
parallelization strategies for Graph Code algorithms, to improve the efficiency, which should
lead to a better user experience. By applying decomposition methods, we modeled parallel
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versions of Graph Code algorithms. The characteristics of Graph Code metric calculation for
the similarity search are good for scaling with both the number of Graph Codes to process
and the number of processor cores used. We implemented a selection of the modeled algo-
rithms for CUDA GPUs and CPUs with POSIX-Threads. The evaluation results prove the
expected scaling behavior. A proven speedup of 225% could be measured. We integrated
the implementation into GMAF and users observed less or even no loading times while
searching for similarities.

In summary, massive speedups are possible on high-end GPUs and high speedups
on CPUs. However, processing Graph Codes at the billion scale takes the processing time
beyond the one-second margin. Based on the modeled algorithms, an implementation can
be created for execution on multiple GPUs within a system or a distributed system. Such
an implementation can probably achieve further acceleration.

As the evaluation has shown, a higher LOD results in larger dimensions of the Graph
Codes and thus to a longer execution duration. Therefore, any measure that compacts the
Graph Codes, or the originating MMFGs, will result in a better execution duration. One
option to achieve this is the use of the compact SMMFGs. SMMFGs will improve the
processing times with an acceptable loss of accuracy.

Future research could examine the performance of multi-GPU systems and the com-
bined algorithm PCPMPRPC, which could lead to the speedup of plain PMPR for a
high LOD.
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