
Citation: Krause, T.; Zickfeld, M.;

Bruchhaus, S.; Reis, T.; Bornschlegl,

M.X.; Buono, P.; Kramer, M.;

Mc Kevitt, P.; Hemmje, M. An

Event-Driven Architecture for

Genomics-Based Diagnostic Data

Processing. Appl. Biosci. 2023, 2,

292–307. https://doi.org/10.3390/

applbiosci2020020

Academic Editor: Nikolaos

Kourkoumelis

Received: 28 February 2023

Revised: 11 May 2023

Accepted: 26 May 2023

Published: 2 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Event-Driven Architecture for Genomics-Based Diagnostic
Data Processing
Thomas Krause 1,* , Mike Zickfeld 1 , Sebastian Bruchhaus 1 , Thoralf Reis 1 , Marco X. Bornschlegl 1 ,
Paolo Buono 2 , Michael Kramer 3, Paul Mc Kevitt 4 and Matthias Hemmje 1

1 Faculty of Mathematics and Computer Science, University of Hagen, 58097 Hagen, Germany
2 Computer Science Department, University of Bari, 70125 Bari, Italy
3 ImmBioMed Business Consultants GmbH & Co. KG, 64319 Pfungstadt, Germany
4 Research Institute for Telecommunication and Cooperation (FTK), 44149 Dortmund, Germany
* Correspondence: thomas.krause@fernuni-hagen.de

Abstract: Genomics-based diagnostic data (GBDD) are becoming increasingly important for labora-
tory diagnostics. Due to the large quantity of data and their heterogeneity, GBDD poses a big data
challenge. Current analysis tools for GBDD are primarily designed for research and do not meet
the requirements of laboratory diagnostics for automation, reliability, transparency, reproducibility,
robustness, and accessibility. This makes it difficult for laboratories to use these tools in tests that need
to be validated according to regulatory frameworks and to execute tests in a time- and cost-efficient
manner. In order to better address these requirements, we propose an event-driven workflow-based
architecture as the basis for a processing platform that is highly scalable using container technologies
and microservices. A prototype implementation of this approach, called GenomicInsights, has been
developed and evaluated to demonstrate its feasibility and suitability for laboratory diagnostics.

Keywords: genomics; diagnostics; architecture; containerization; scalability; big data; genomic insights

1. Introduction

Genomics-based diagnostic data (GBDD) are medical data generated from a range
of genomic technologies, including sequencing, qPCR, or microarrays. They are used in
many areas such as gene expression analysis or metagenomics and has become an im-
portant aspect of modern laboratory medicine. GBDD can be used to diagnose diseases
and optimize treatments, thus offering immense potential for personalized medicine and
precision diagnostics. GBDD have been used in a range of medical fields such as human
development, lifestyle, immunity, and diseases [1–3]. Depending on the diagnostic appli-
cation, these data can comprise several hundred gigabytes for a single patient sample [4].
The speed at which these data are generated is also increasing due to reduced costs and
improved technology [5]. Furthermore, GBDD can vary widely depending on the use case,
necessitating the application of different analysis methods. Consequently, genomics is
considered a big data problem, characterized by these three essential properties: volume,
velocity, and variety [5,6].

Medical laboratories face the challenge of wanting to use the latest diagnostic tech-
nologies as soon as possible while also needing automated, reproducible, and reliable
processes [7]. At the same time, it must be possible to trace in detail at any time how
a particular diagnosis was determined to verify the accuracy and validity of the results
as required by regulatory frameworks such as the In Vitro Diagnostic Regulation (IVDR)
of the European Union or comparable international regulations [8,9]. Common tools for
processing GBDD, on the other hand, are primarily designed for research purposes where
individual experiments with variable parameters can be performed and where automation,
standardization, and reproducibility are less essential [7,10]. For example, these tools may
allow for individual experiments with variable parameters, making it difficult to achieve

Appl. Biosci. 2023, 2, 292–307. https://doi.org/10.3390/applbiosci2020020 https://www.mdpi.com/journal/applbiosci

https://doi.org/10.3390/applbiosci2020020
https://doi.org/10.3390/applbiosci2020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applbiosci
https://www.mdpi.com
https://orcid.org/0000-0003-4912-1703
https://orcid.org/0000-0001-8841-1434
https://orcid.org/0000-0002-7783-2636
https://orcid.org/0000-0003-1100-2645
https://orcid.org/0000-0003-3789-5285
https://orcid.org/0000-0002-1421-3686
https://orcid.org/0000-0001-9715-1590
https://orcid.org/0000-0001-8293-2802
https://doi.org/10.3390/applbiosci2020020
https://www.mdpi.com/journal/applbiosci
https://www.mdpi.com/article/10.3390/applbiosci2020020?type=check_update&version=1

Appl. Biosci. 2023, 2 293

the necessary level of standardization required for clinical diagnostics. The focus on re-
search is also noticeable in areas such as result visualization and communication, which
is not usually tailored toward individual patients [7]. In a clinical setting, it is essential to
convey complex data to patients and physicians in a way that is easy to understand and
actionable.

This leads to the question of how an automated analysis platform can be designed
and implemented that allows automated processing of GBDD for medical laboratories. To
answer this question, Section 2 first summarizes the relevant state of the art. Section 3
proposes a technical architecture for automated genomic data processing in medical labora-
tories to address the outlined challenges. Then, a prototypical implementation is discussed
and evaluated in Sections 4 and 5. The paper concludes with a summary and outlook in
Section 6.

2. State of the Art

In Krause et al. [11,12], we have introduced the GenDAI model for the processing
and analysis of GBDD, which abstracts the different process steps and discusses necessary
components and concepts to meet the requirements of GBDD processes. Figure 1 shows an
overview of the GenDAI conceptual model. The model is based on the AI2VIS4BigData
model of Reis et al. [13] and distinguishes the aspects data collection, management, and
curation; analytics, interaction, and perception; insights and effectuation; and persistence. At
its core, the model uses a workflow-based approach, allowing laboratory processes to be
dynamically defined and configured as a combination of multiple independent tasks [14].

Persistence

User Interface

Analytics

Infrastructure

Insight & Effectuation

Continuous Product &
Service Improvement

Methods

Data Collection, Management & Curation

Business Understanding

Regulatory
Policies

Knowledge-based SupportRetention and Archiving

Interaction & Perception

Analysis EvaluationData EnrichmentData Preparation

CollaborationVisualizationWorkflow
Management

Analysis
Configuration

Evaluation
Configuration

Instrument
Management

Import
Sources

Data
Management

Instrument
Data

Dashboard Query UI

Meta
ResultsQC Data

Data Lake Structured Content

LIMS
Connector

Configuration
Data PublicationsRaw

Data

Semantic
Repr.Audit LogResult Data Taxonomies Reference

Data

Domain
Expert

Diagnostic
Expert

Scientific
Publications

Patient
Records

Statistical

Traditional ML

Deep Learning

Presentation & Interpretation

Visualization
Generation

Intent Detection QMS
Compliance

Officer

Performance Evaluation

RMS

Archive
Packages

Reference
Data

Analysis
Results

Long-Term
Evaluation

Service Registry

Workflow Engine

Scheduler

Figure 1. GenDAI Conceptual Model. © 2021 IEEE. Reprinted, with permission, from Krause et al. [11].

The state of the art relevant to the system’s development can be partly categorized
based on this conceptual model. However, due to its scope, only aspects strictly required
for demonstrating the technical architecture and prototype will be considered here. In
addition, technical aspects and architectural issues that are not reflected in the conceptual
model must also be considered.

The following sections will thus first take a look at various analysis tools that can
answer genomic questions and can be attributed to the area of analytics in the GenDAI
conceptual model. Next, the state of the art for the visualization and reporting of GBDD

Appl. Biosci. 2023, 2 294

and laboratory test results is discussed, which is covered in the GenDAI conceptual model
by the interaction and perception domain. Subsequently, a consideration of general big data
frameworks is interesting, which enables the processing of large quantities of data with-
out being specifically specialized in medical or laboratory diagnostic questions. Closely
following this are distributed storage systems that allow for the reliable persistence of
large quantities of data and can be assigned to the persistence sub-aspect in the model.
Workflow management systems (WMS) are worthy of attention as an independent category
because they enable processes to be mapped and automated in a structured manner. For
the development of custom solutions, consideration of paradigms and architectures for
distributed systems is also essential. As a particular area of interest, Event-driven archi-
tectures (EDAs) can be considered, which are particularly suitable for the development
of transparent and reliable distributed systems [15]. Finally, deployment strategies and
specifically container-based deployment methods are considered.

2.1. Genomic Analysis Tools

For the analysis of GBDD, some tools are specifically designed for certain types of
data or specific application areas, while generic bioinformatics platforms serve as the basis
for many different analyses. The transitions between the two are fluid.

BLAST [16] is a collection of specialized tools for sequence alignment of nucleotide
or protein sequences and forms an important building block for many genomic questions.
BLAST calculates the match between a query sequence and the sequences contained in
a database. Significant matches are evaluated and returned. Thus, it can be determined
whether the query sequence is part of a known sequence. In metagenomics, for example,
BLAST can be used to identify microorganisms in a sample. SILVA and RDP are two other
well-known databases with associated alignment tools that focus on matching sequences to
a taxonomy and phylogeny and are thus also frequently used in metagenomics [17].

QIIME2 [18] is a platform for metagenomic applications. Based on raw sequencing
data, metagenomic questions can be answered, e.g., on the taxonomy of microorganisms
or functional analysis [19]. Qiita [20] (pronounced “cheetah”) is an open-source platform
for the management, processing, and analysis of metagenomic data. It supports multiple
workflows using analysis plugins, including QIIME2. It aims for high comparability
between studies by collecting suitable metadata, thus facilitating metastudies. Galaxy [21]
is a workflow-based platform for processing and persisting bioinformatics data. It has a
large collection of tools for different domains. ASaiM [22] is a Galaxy distribution that is
set up with metagenomic tools and workflows.

A detailed discussion of various tools for qPCR analysis and their potential use for
laboratory diagnostics is found in Krause et al. [7,10]. The tools examined are of limited
suitability for medical laboratories as they were primarily designed for research, cover only
part of the laboratory process, and have not been validated for diagnostic use according to
regulatory legislation [9]. The same limitations also apply to the other tools discussed in
this section.

2.2. Reporting and Visualization

In genomics, there is a strong need for visualization because of the dimension, com-
plexity, and heterogeneity of data [23]. For example, attempts to use visualization in
metagenomic analyses have been made by many researchers. GutMeta contains more
than 90 projects and makes available several visualization techniques to reveal relation-
ships among biological data. Specifically, it shows a correlation matrix and a radial tree
as central techniques [24]. Another technique employed is the horizon chart technique,
which consists of a compact stacked area chart representation that helps to find patterns
over time [25]. In general, a single visualization is not enough to support the analysis
process, thus multiple coordinated visualizations are mandatory in this context [26,27].
This is also reflected by existing surveys on biovisualization that mostly focus on specific
aspects of the data or specific biological analysis tasks. Kerren and Schreiber [28] presented

Appl. Biosci. 2023, 2 295

a survey focused on network visualization, with a specific focus on cellular networks. They
review existing biological approaches and highlight how analysis and visualization tools
for biological networks are increasingly available. One example is the KEGG pathway
maps that detail molecular interactions and reactions [28,29]. Another survey focused on
visualizing medical data using glyphs [30]. They provide six guidelines for the usage of the
glyph technique. Suschnigg et al. [31] propose a multivariate synchronized visualization
that also uses glyphs to visualize anomalies in cyclic time series data. Even if the domain
they explore is in the automotive sector, their tool can be adapted to the biological domain.
When high-dimensional data must be analyzed, glyphs can be combined with dimension-
ality reduction techniques such as principal component analysis (PCA) or t-distributed
stochastic neighbor embedding (t-SNE) [32].

These visualizations are important for research but are not adapted for visualizing
GBDD of individual patients. Traditionally, results from medical laboratories are visualized
only in a very simplistic way, if at all. For example, many laboratory parameters have
a reference range, and the visualization is limited to representing this reference range
along with the measured value. However, such simplistic visualizations quickly reach their
limits with GBDD, since many results cannot be represented in 1D. Moreover, software
for creating laboratory reports is often a fixed part of laboratory information management
systems (LIMS) and is thus only adaptable and expandable to a limited extent.

2.3. Big Data Frameworks

Big data frameworks allow the processing and storage of large quantities of data. To
make this possible, they allow data to be processed and stored on distributed systems.
Through dynamic scaling, additional resources can be added as needed. Other typical
characteristics of big data frameworks are their fault tolerance, the provision of efficient
algorithms for the analysis and processing of distributed data, and the management of
large, heterogeneous data sets. The most popular frameworks are Hadoop, Spark, and
Flink [33].

Apache Hadoop is used for big data processing and storage and is characterized
by fault tolerance, scalability, and parallel processing of computations [34]. Structured
and unstructured data sets can be processed. Hadoop consists of the core components
HDFS, YARN, and MapReduce. HDFS is the storage of a Hadoop cluster and forms the
distributed storage layer. YARN is responsible for cluster resource management within a
Hadoop cluster and takes care of workload scheduling. MapReduce facilitates the efficient
processing and analysis of extensive data sets through a parallel programming model.

Apache Spark is a distributed and high-performance data processing platform com-
prising several components accessible via an API [34]. Spark’s high-level architecture
includes the Cluster Manager, Driver Program, and Executor. The Cluster Manager man-
ages the servers in the cluster that run Spark applications, while the Driver Program is
responsible for running the Spark application and communicating with the Cluster Man-
ager and Executors in the Spark cluster. The Executors are processes that run on the worker
nodes and process the tasks assigned by the Driver while reporting the status and their
results to the Driver.

The Spark ecosystem includes Spark Core, Spark Streaming, Spark SQL, GraphX,
MLib, SparkR, and standard libraries for various programming languages. Spark Core
contains the system for parallel data processing, while the other components are extensions
for specific functions, such as streaming, SQL, and machine learning. Spark has a large
user base and an active development community.

Apache Flink allows parallel stream and batch processing [33]. It has a data flow
programming model that performs operations such as aggregation, filtering, and mapping
on data streams. Savepoints and checkpoints, with resume or recovery, respectively, provide
fault tolerance [35]. These streams can come from several sources, including but not limited
to Apache Kafka and Cassandra and HDFS. Flink also offers an SQL-like API. It is
sometimes compared to Spark as both systems employ a lambda architecture.

Appl. Biosci. 2023, 2 296

Other noticeable frameworks include Apache Beam and Apache Samza. Apache
Samza has an API that unifies batch and stream processing in real time and fault tolerance
capabilities [36], while Apache Beam offers a unified programming model for runners
implemented in multiple runtimes such as Spark, Samza, and Flink [37].

2.4. Distributed Storage Systems

For the persistence of GBDD, storage systems are required that allow fast access from
distributed systems and are easy to expand if necessary.

HDFS is the distributed and scalable file system used in Hadoop [34]. An HDFS cluster
consists of a name node, which manages the metadata of the files, and any number of data
nodes, which manage the actual data in the form of blocks. Due to the redundant storage
of blocks on multiple nodes, HDFS can guarantee a high level of fault tolerance.

Ceph is a general-purpose distributed file system that also scales across many nodes [38].
It offers several storage types and APIs for accessing data. Data and metadata are stored
redundantly on several nodes to achieve higher fault tolerance.

2.5. Workflow Management Systems

Workflow management systems (WMS) are tools that support the automation of pro-
cesses. They allow users to define, execute, and monitor workflows. Workflows consist of a
series of tasks that can depend on each other. WMS support the transparency of processes,
in which they can make the individual steps and the status of workflow visible. By divid-
ing processes into individual tasks, workflows also enable improved resilience because,
depending on the WMS, individual steps that have failed can be repeated [14]. Workflow
definition languages like CWL [14] allow the sharing of workflows across different WMS
and execution environments.

Airflow is a WMS that was initially developed by Airbnb and is now being further
developed as part of the Apache Software Foundation. Workflows are defined in code using
Python. In principle, tasks can be defined in any language, as long as they are executable
via the shell. Apache Airflow has a large community and is actively developed further [39].

Luigi is a WMS developed by Spotify that enables the orchestration of complex data
pipelines and tasks [40]. Tasks define their dependencies and are executed when all
of them are satisfied. Luigi is known for its easy learning curve and has a large and
active community. Compared to Apache Airflow, Luigi is easier to set up. However, the
comparatively simplistic user interface and the lack of integrated features for parallelization
and scaling of tasks are disadvantages.

Depending on the use case, commercial cloud-based WMSs such as AWS Step Func-
tions and Azure Logic Apps might also be considered [41]. They offer scalability and easy
integration with other cloud services, making them a logical choice for workflows that
involve cloud-based tasks.

2.6. Distributed System Paradigms

Representational state transfer (REST) is a software architecture for creating web
services characterized by six typical properties [42]. A uniform interface is used to access
resources in the system. Resources are addressed via a URL and queried or modified using
the HTTP protocol and HTTP verbs such as GET and POST. A client–server architecture
separates the responsibilities between client and server and lets them work independently.
Statelessness denotes the absence of session-based functions, i.e., the management of client
state on the server. Each request is thus considered on its own and contains all the infor-
mation needed to process the request. Cacheability refers to the possibility of declaring
responses as cacheable and thus allowing the temporary storage of responses on the client
in order to improve performance. The use of layered systems allows an abstraction where
the client does not need to know the exact processing logic behind the API. Code on demand
allows code (e.g., Javascript) to be transmitted through the interface and executed on the
client. The latter criterion is optional and is not used in many APIs.

Appl. Biosci. 2023, 2 297

Microservices are an architectural style in which an application is structured as a
collection of loosely coupled services [43]. Each microservice is responsible for a specific
task and can be deployed and scaled independently, which can provide greater flexibility
and resilience than more monolithic architectures. This can be beneficial in complex
systems where different components have different requirements or are developed by
different teams. For example, a system might use one microservice for user authentication,
another for data analysis, and a third for generating reports. By breaking down the
system into smaller components, it can be easier to develop, deploy, and maintain the
application. Microservices also manage their own state, e.g., by using and having exclusive
access to a database tailored to the application purpose. This makes microservices very
modular and easy to replace without affecting other parts of the application. Access to and
communication between microservices is done via defined APIs. Microservices are often
used together with container technologies such as Docker and Kubernetes, as these can
significantly simplify the deployment of many services. The advantages of microservices
can thus be summarized in better scalability, higher flexibility, increased resilience, faster
deployment, and improved efficiency of the development teams [43,44].

2.7. Event-Driven Architecture

Event-driven architecture (EDA) is a design approach in which application compo-
nents communicate with each other using events [45]. An event is a message that describes
a state change and can be triggered both by external actions, such as user interactions,
and by internal mechanisms, such as timers or other scheduled processes. In an EDA,
event-producing components are called producers and event-receiving components are
called consumers. Components can be producers and consumers at the same time.

Closely related to EDA is the technique of event sourcing, which involves storing all
state changes in the system as events in an event log [43]. The current state of the system
can be reconstructed by replaying these events, enabling reproducibility and transparency.
Event sourcing also provides an audit trail of all changes to the system, making it easier to
identify the source of errors and debug issues [15].

EDA is a flexible and scalable design paradigm, which is particularly well suited for
the development of distributed systems [15,43]. Among other attributes, the advantage of
an EDA lies in the decoupling of components and the associated modularity and reusability.
Producers and consumers do not need to know about each other’s existence, which makes
it easier to add new components to the system without affecting existing ones. Combined
with event sourcing, EDA also enables reproducibility and transparency. An EDA can
be implemented well with microservices since they also emphasize modularity and the
independence of components. EDA can be used in practice in many ways, such as imple-
menting event-driven workflows, processing data in real time, and integrating systems
with different architectures.

To support EDA, event brokers can be used to provide communication channels for
events, route events to the appropriate consumers, and persist events for future processing.
Examples of event brokers include Apache Kafka, RabbitMQ, Azure Service Bus, Azure
Event Grid, and Amazon EventBridge. By providing a standardized interface for handling
events, they simplify the implementation of EDA and make it easier to manage and scale
distributed systems.

2.8. Deployment

GBDD applications require suitable technologies to deploy the individual components
and the application as a whole. They ensure that applications can be run effectively, with
minimal downtime and high scalability. Due to their flexibility, container-based approaches
have been particularly prominent in recent years. Containers isolate applications from
the running operating system by providing a consistent and predictable environment.
Container-based approaches allow developers to package an application with all its depen-

Appl. Biosci. 2023, 2 298

dencies into a container image that can run on any machine, making it easier to move the
application across different environments.

Docker [46] is the most popular container platform and the foundation for many other
tools. Docker enables the development, deployment, and execution of container-based
applications on many operating systems. Docker Compose enables the definition and
execution of applications that consist of multiple containers. Docker Swarm is used for
distributed execution and scaling of Docker containers on a cluster. Kubernetes performs
a similar function but offers extended functionalities and is thus also suitable for more
complex applications.

3. Technical Architecture

To meet the requirements of laboratory diagnostics better and more comprehensively,
a technical architecture based on the GenDAI conceptual model and the discussed tech-
nologies for EDA-based systems and big data processing can be designed. The model
presented here uses an EDA-based approach that embeds existing analysis tools into a
common architecture and is also easy to deploy using containers. The approach allows the
development of a scalable, reliable, and efficient platform for the analysis of GBDD.

The use of an EDA enables a high level of transparency for all relevant actions per-
formed, as event communication between components can be observed and recorded.
Additionally, inputs and outputs can be tracked. By carefully designing the components,
processing can also occur deterministically, enabling the reproducibility of all analyses.
Event sourcing also allows the local data of individual microservices to be restored at
any time.

Figure 2 shows an overview of the technical architecture with the event hub as the
core of the EDA. The components are orchestrated with the help of a WMS in which
the workflows are defined. This makes it possible to react flexibly to new requirements
and to use existing and established tasks. For the same reason, the use of workflows also
represents the core of the GenDAI conceptual model. Within the EDA, the WMS reacts to
events and triggers new events that cause components to execute tasks. A modular web
app acts as a front to enable the management of data, workflows, and results. To be as
independent as possible from specific execution environments and to simplify deployment,
a web application is used that communicates with the backend using microservices.

Backend Services

Event-Driven Workflows

Distributed Storage

Modular Web App Event Hub

Support Data

Spark
Wrapper

Data Management

Workflows

Analytic Tool
Wrappers

Workflows

Workflow Engine
& Scheduler

App Services

Event
Store

A
pp

lic
at

io
n

S
er

vi
ce

s
(B

ac
ke

nd
 fo

r F
ro

nt
en

d)

Result View

Integrated
Analytics

Raw Data Results Reports

Report
Generator

Figure 2. Technical Architecture of the Solution.

Tasks are implemented as microservices. This allows them to be developed indepen-
dently from the rest of the system, which facilitates the implementation of new requirements.
It also enables them to be deployed and scaled separately based on their demands, thus
improving the system’s scalability as a whole. In order to avoid having to reimplement
existing analysis procedures from scratch, they can be wrapped in microservices using a
mediator-wrapper approach. In contrast, implementing less complex analyses directly is
another viable option. For more complex analyses that need to process large quantities
of data in parallel and for which there are no ready-made tools, Apache Spark can be
integrated via wrapper microservices. Apache Spark was chosen for its ease of use and
large community [47], but other big data frameworks such as Hadoop or Flink could be

Appl. Biosci. 2023, 2 299

used as well. The reporting and visualization of test results are also implemented as a
separate microservice and thus enable both the integration of existing software through
wrappers and the implementation of new approaches. These services support the interaction
and perception aspect of the GenDAI conceptual model [11].

A distributed storage system is used to store input data, output data, intermediate
results, and auxiliary data, which can be accessed by the components either directly or via
suitable microservices. This storage system maps to the persistence layer in the GenDAI
conceptual model. Using a distributed storage system for persistence allows the system to
scale beyond the storage capabilities of a single computer.

To facilitate deployment and enable dynamic scaling of each component and the
system as a whole, a container orchestration solution is used.

Figure 3 shows a more detailed overview of the respective components and their
interdependencies. The front end allows new data to be added by calling a storage mi-
croservice, which stores the data in the distributed storage. The front end also allows new
workflows to be triggered in the WMS. State transitions in the workflow are triggered
by events and can trigger new events. These events are processed by the event hub and
can be queried by interested consumers. Analytics microservices subscribe to events that
trigger the start of an analysis and execute the required analyses. If the microservice is a
wrapper, the wrapped tool is executed accordingly. When an analysis is completed, the
results are stored in the distributed storage, and an event is generated and forwarded to
the event hub. This event can again lead to a change in the state of the workflow, which
can trigger additional components, such as the reporting microservice. The results stored
in the distributed storage can be viewed via the front end after the workflow is complete.

Storage
Microservice

Distributed Storage

Reporting Microservice

BLAST Wrapper
Microservice

ASaiM Wrapper
Microservice

QIIME2 Wrapper
Microservice

Apache Spark
Wrapper Microservice

Frontend

Integrated Analysis
Microservices

Use

Use

Use
Use

Use

Use

Use

Use

Apache Spark

ASaiM Use

Use

Use

Use

Use

Use

Use

Use

Use

Use

Use

Workflow Management
System

Event Hub

Figure 3. Component Overview and Dependencies.

Figure 4 shows an example of a simple workflow for performing an analysis and
then generating a report as an activity diagram with rounded rectangles representing
action tasks in the workflow and diamonds representing waiting tasks to be triggered by
external events. Figure 5 expands this to show the associated communication between the
components involved with the same example workflow. The events sent and received in
the system are shown as rectangles in the “Events” row.

Appl. Biosci. 2023, 2 300

Analysis Workflow Example

Start Analysis Create ReportAnalysis
Finished?

Report
Finished?

Figure 4. Simple analysis workflow example.

D
is

tr
ib

ut
ed

 S
ys

te
m

Fr
on

te
nd Start Analysis with

Specified Parameters
and Data

Display Results

W
or

kf
lo

w

Start Analysis Create ReportAnalysis
Finished?

Report
 Finished?

Ev
en

ts

Analysis_Requested Analysis_Finished Report_Requested Report_Finished

A
na

ly
si

s
Sv

c.

Execute Analysis

R
ep

or
tin

g
Sv

c.

Render Report

Trigger Workflow

Receive

Receive Send

ReceiveSend Receive

Send

Poll Status

Send

Figure 5. Flow of events with coresponding workflow and principal components.

In summary, the technical architecture presented here provides a scalable, reliable, and
efficient platform for the analysis of GBDD that is designed to meet the requirements of
laboratory diagnostics, such as high transparency and reproducibility.

4. GenomicInsights Prototype

A prototype called “GenomicInsights” was developed, which implements a subset of
the components and functions discussed above (Figure 6) to test the proposed model. The
source code has been published on GitHub [48]. GenomicInsights uses Apache Kafka as the
event broker and Apache Airflow as the workflow engine due to its high scalability. Two
workflows were implemented in this framework. The first workflow performs a calculation
of the GC content of an input file and outputs the distribution graphically. For this purpose,
a microservice is used that performs the calculation directly within the service. The second
workflow performs a BLAST analysis. For this, a BLAST microservice wrapper is used,
which executes the BLAST command line tool with the input file and stores the results. In
both cases, the results are collected by a simple report microservice and made available to
the user interface. To simplify the development and deployment of the initial prototype
and because the primary focus was on the event communication infrastructure, there is no
analysis task implemented to use Apache Spark yet. However, this is planned for future
implementation.

Appl. Biosci. 2023, 2 301

Workflow Management
System (Apache Airflow)

Storage Microservice

Event Hub
(Apache Kafka)

Storage

Reporting Microservice

BLAST Wrapper
Microservice

GC-Content
Microservice

Frontend (Vue)

Use

Use

Use

Use

Use

Use

Use

Use

Use

Use

Use

Figure 6. Implemented components of the GenomicInsights prototype.

Workflows in Apache Airflow are defined in Python. An example workflow, as
shown in Figure 4, can be implemented as shown in Listing 1. The PythonOperator tasks
send defined events to a Kafka topic while the PythonSensor tasks wait for specific events.
Sequential workflows can be defined by sequencing the two task types using the >> operator.
Figure 7 shows the workflow in the Apache Airflow web interface.

Listing 1. Apache Airflow workflow definition in GenomicInsights.

with DAG("BLAST_NUKLEOTID", ...) as dag:
t1 = PythonOperator(task_id="BLAST_Analysis_Requested", ...)
t2 = PythonSensor(task_id="BLAST_Analysis_Finished", ...)
t3 = PythonOperator(task_id="Report_Requested", ...)
t4 = PythonSensor(task_id="Report_Finished", ...)
t1 >> t2 >> t3 >> t4

Figure 7. Workflow in Apache Airflow.

A web-based user interface was developed with Vue [49], which can be used to upload
data, start analyses, and view results. To achieve this, the user interface has access to the
REST-based Apache Airflow API to list available workflows, start workflows, and monitor
currently running workflows. It also has access to the storage system to upload input data
and view result data.

For simplicity, a real distributed storage system was not used in GenomicInsights.
Instead, a simple file share was used, and a microservice was developed that allows access
to this storage from the user interface. The storage microservice was implemented in a way
that allows easy switching to a real distributed storage system without requiring changes
in the client.

Appl. Biosci. 2023, 2 302

Figure 8 shows a sequence diagram that exemplifies the communication between the re-
spective components. The user uploads data from the front end, which invokes the storage
microservice. The user can then request a list of available workflows, which is queried from
Apache Airflow and displayed in the user interface (Figure 9). A list of available data files
that have previously been uploaded is also queried from the storage service. After the user
selects a workflow, such as “BLAST”, and a matching data file, the workflow is triggered
using Apache Airflow. The user interface then switches to a detailed view that monitors the
invoked workflow and regularly polls the current state. As part of the BLAST workflow,
Apache Airflow sends a BLAST_Analysis_Requested to the event bus and waits for a cor-
responding BLAST_Analysis_Finished event. The event data contains all parameters to
execute the analysis and to match the events to the correct workflow instance. The BLAST
microservice is triggered by listening to BLAST_Analysis_Requested events and executes
the analysis. Upon finishing the analysis, the service sends a BLAST_Analysis_Finished
event, which triggers the continuation of the workflow in Apache Airflow. As a second
task in the BLAST workflow, a report is requested using the Report_Requested event
that is subsequently received and evaluated by the reporting microservice. The reporting
microservice summarizes the results of the analysis and prepares a downloadable report
that is persisted in storage. The service then sends a Report_Finished event, which termi-
nates the workflow in Apache Airflow. After polling the workflow state, the user interface
enables the operator to download the report file using the storage microservice (Figure 10).

For the deployment of the solution, Docker Compose was used as it is easy to set up
and the advanced features of Docker Swarm or Kubernetes were not needed for the first
iteration of GenomicInsights. Wherever possible, existing Docker images were used as base
images and then configured for each individual component. Docker Compose files were
used to manage multiple dependent Docker containers, their network, and volumes.

In summary, GenomicInsights enables the execution and monitoring of user-defined
workflows in an EDA and provides example implementations for standard analysis tasks
and reporting that can be used in workflows. Overall, it demonstrates the feasibility of the
proposed EDA model for genomic data analysis and the potential benefits of using EDAs
for scientific computing in laboratory diagnostics.

Receive Event

:Operator

Upload Data

Frontend

Data Uploaded

View Workflow List

Data files

Start Workflow

Report

Storage-
Microservice

Download Report

Upload Data

Query Data Files

Query Available Workflows

Data Files

Trigger BLAST Workflow

Apache Airflow

Workflows

Apache Kafka

Receive Event Send Event

Receive Event
Send Event

BLAST-
Microservice

Send Event

Receive Event

Execute
Analysis

Reporting-
Microservice

Render
Report

Data Uploaded

Send Event

View Report
Report

View Details

loop [Poll Workflow State]

Request Workflow State

Workflow State

<<event>>
BLAST_Analysis_Requested

<<event>>
BLAST_Analysis_Finished

<<event>>
Report_Requested

<<event>>
Report_Finished

Figure 8. Sequence of events in GenomicInsights for BLAST workflow example run.

Appl. Biosci. 2023, 2 303

Figure 9. GenomicInsights: List of available workflows.

Figure 10. GenomicInsights: finished analysis and report download.

5. Evaluation

The evaluation of GenomicInsights and the model was conducted qualitatively and
quantitatively. For the qualitative evaluation, functional tests were performed using sample
data to validate the results against the expected results. Quantitatively, the performance of
the solution was evaluated by measuring the times for different analyses.

For the evaluation of the GC content workflow, a test dataset from the NIH Human
Microbiome Project [50] was used. Each file in the dataset was about 15 gigabytes in size
and took approximately 40 min to process on a Macbook Pro (2021 model, M1 Pro CPU,
32GB RAM). The performance was primarily determined by the Biopython library [51] that
was used in the analysis microservice. For the BLAST workflow, a test dataset (“Seq2”)
from a guide of National Library of Medicine [52] was used and matched with the partial
database “NT.00” from [53]. Due to the small file size, the BLAST analysis required only
45 s on the same Macbook Pro. The results were compared and found consistent with the
results of an online BLAST search. An excerpt from the generated BLAST report for the test
dataset is shown in Figure 11.

Although the user interface was not the focus of GenomicInsights, a rudimentary
usability analysis was performed using a cognitive walkthrough. Several areas of improve-
ment were identified, such as the lack of an overview of all running workflows with a
detailed display of progress and error states. Additionally, the navigation, layout, and ease
of use could be improved to make the platform more user-friendly.

It should be noted that the evaluation of GenomicInsights was limited in scope and
focused primarily on functionality and performance. Further evaluation would be required
to assess the scalability and robustness of GenomicInsights under different conditions.
Examples could include tests using multiple large datasets that are beyond the capabilities
of a single system and load tests using multiple concurrent users to test the scalability of the
system. Systematic tests of failure conditions and recovery mechanisms, such as outages of
the involved services, would also be required to assess the robustness.

Appl. Biosci. 2023, 2 304

TestREPORT
BLASTN 2.13.0+

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J
Comput Biol 2000; 7(1-2):203-14.

Database: Nucleotide collection (nt)
 2,285,001 sequences; 11,968,095,945 total letters

Query= Seq2

Length=1389
 Score E
Sequences producing significant alignments: (Bits) Value

AB060107.1 Bos taurus EF1A mRNA for elongation factor 1 alpha, co... 2566 0.0
BC105315.1 Bos taurus eukaryotic translation elongation factor 1 ... 2549 0.0
AJ238405.1 Bos taurus mRNA for elongation factor 1 alpha 2549 0.0
X62245.1 O.cuniculus mRNA for elongation factor 1 alpha 1962 0.0
NM_001082339.1 Oryctolagus cuniculus eukaryotic translation elong... 1956 0.0
NM_001133439.1 Pongo abelii eukaryotic translation elongation fac... 1945 0.0
AB169543.1 Macaca fascicularis brain cDNA, clone: QflA-10920, sim... 1940 0.0
NM_001009165.1 Pan troglodytes eukaryotic translation elongation ... 1940 0.0
CR926083.1 Pongo abelii mRNA; cDNA DKFZp459K1610 (from clone DKFZ... 1940 0.0
AC146099.3 Pan troglodytes BAC clone RP43-5L2 from chromosome 7, ... 1940 0.0
AK055058.1 Homo sapiens cDNA FLJ30496 fis, clone BRAWH2000362, hi... 1934 0.0
BC066893.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC018150.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC014224.2 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC072385.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC112939.1 Synthetic construct Homo sapiens eukaryotic translatio... 1934 0.0
AL593851.6 Human DNA sequence from clone RP11-415H23 on chromosom... 1934 0.0
AY043301.1 Homo sapiens elongation factor 1-alpha mRNA, complete cds 1934 0.0
AF116726.1 Homo sapiens MSTP056 mRNA, complete cds 1934 0.0
AK098510.1 Homo sapiens cDNA FLJ25644 fis, clone STM07948, highly... 1934 0.0
X03558.1 Human mRNA for elongation factor 1 alpha subunit (EF-1 a... 1934 0.0
BC111051.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
AY893449.1 Synthetic construct Homo sapiens clone FLH127825.01X e... 1934 0.0
BC071741.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC019050.2 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC018641.2 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC009875.2 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC018850.2 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC019669.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC035877.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC029997.1 Homo sapiens cDNA clone IMAGE:4424525 1934 0.0
BC029343.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC029337.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC009733.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC012891.1 Homo sapiens eukaryotic translation elongation factor ... 1934 0.0
BC057391.1 Homo sapiens eukaryotic translation elongation factor ... 1929 0.0
AK223046.1 Homo sapiens mRNA for eukaryotic translation elongatio... 1929 0.0
AK223030.1 Homo sapiens mRNA for eukaryotic translation elongatio... 1929 0.0
AK222982.1 Homo sapiens mRNA for eukaryotic translation elongatio... 1929 0.0
AK222551.1 Homo sapiens mRNA for eukaryotic translation elongatio... 1929 0.0
AK222523.1 Homo sapiens mRNA for eukaryotic translation elongatio... 1929 0.0
AK222515.1 Homo sapiens mRNA for eukaryotic translation elongatio... 1929 0.0
AK026650.1 Homo sapiens cDNA: FLJ22997 fis, clone KAT11962, highl... 1929 0.0
AK024888.1 Homo sapiens cDNA: FLJ21235 fis, clone COL00867, highl... 1929 0.0
X16869.1 Human mRNA for elongation factor 1-alpha (clone CEF4) 1929 0.0
BC071841.1 Homo sapiens eukaryotic translation elongation factor ... 1929 0.0
BC071727.1 Homo sapiens eukaryotic translation elongation factor ... 1929 0.0
AJ420488.1 Homo sapiens mRNA full length insert cDNA clone EUROIM... 1929 0.0
AC000394.1 Genomic sequence from Human 9q34, complete sequence 1929 0.0
BC066894.1 Homo sapiens cDNA clone IMAGE:5264292, containing fram... 1927 0.0
AY890387.1 Synthetic construct Homo sapiens clone FLH018894.01X e... 1925 0.0
AY893896.1 Synthetic construct Homo sapiens clone FLH127907.01L e... 1923 0.0
AF267861.1 Homo sapiens EF1a-like protein mRNA, complete cds 1917 0.0
AC002480.1 Homo sapiens BAC clone GS1-55K18 from 7, complete sequ... 1916 0.0
D00522.1 Cricetulus longicaudatus mRNA for EF-1 alpha, complete cds 1890 0.0
BC095965.1 Mus musculus eukaryotic translation elongation factor ... 1851 0.0
AK135448.1 Mus musculus 12 days embryo female mullerian duct incl... 1851 0.0
AK164671.1 Mus musculus 13 days embryo stomach cDNA, RIKEN full-l... 1851 0.0

Figure 11. BLAST result example (excerpt).

6. Conclusions and Future Work

GBDD play a major role in laboratory medicine. Thus, computer systems that process
GBDD efficiently and reliably are essential. Transparency and reproducibility play a
particularly important role in ensuring the reliability of such systems. An EDA offers
favorable conditions to implement these requirements. GenomicInsights is based on
an EDA and was developed for GBDD analyses. It demonstrates the feasibility of this
approach and could serve as a foundational model for a scalable, dependable, and efficient
platform that fulfills the requirements of laboratory diagnostics for automation, reliability,
transparency, reproducibility, robustness, and accessibility in the analysis of GBDD. The
combination with container-based deployment technologies allows rapid deployment of
the platform across diverse computing environments and facilitates scalability. A limitation
of the GenomicInsights prototype is that it focuses on the general event architecture and
the implementation of example workflows. To actually address many of the challenges that
were outlined, future work is needed.

In the future, GenomicInsights needs to be further developed and evaluated on
larger data sets and concurrent use. In order to demonstrate the actual scalability of the
approach, load tests must be carried out with large data volumes that exceed the capacities
of individual computers. In this course, the storage solution used in GenomicInsights
must be replaced with a truly distributed storage system based on CEPH. Additionally,
when appropriate, analysis tasks should be implemented in Apache Spark or other big
data frameworks such as Hadoop or Flink. To demonstrate the advantage of using an EDA,
more complex workflows from real laboratory use cases should be evaluated. The use of
Kubernetes could further simplify deployment and introduce automatic load-based scaling.

Other sub-areas of the GenDAI model that were not considered in GenomicInsights
should also be looked at in the future. These include, for example, the required long-
term archiving of all data and the use of artificial intelligence (AI) to support and perform
analyses. In this context, new challenges also arise for the visualization of test results, which

Appl. Biosci. 2023, 2 305

must present complex data in a simple way and, at the same time, make the AI-supported
diagnoses comprehensible and explainable.

Usability improvements can be made by developing a comprehensive user interface
that includes enhanced monitoring capabilities to increase the transparency of GenomicIn-
sights and allow users to easily track the progress of their analyses to identify any errors
that occur. Future work should also investigate ways to integrate external services, such
as LIMS.

Author Contributions: Conceptualization, T.K. and M.Z.; methodology, M.H.; software, M.Z.; vali-
dation, M.Z.; investigation, T.K. and M.Z.; writing—original draft preparation, T.K.; writing—review
and editing, S.B., T.R., P.B., M.K. and P.M.K.; visualization, T.K. and M.Z.; supervision, M.H. and
M.X.B.; project administration, T.K. and M.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Behrouzi, A.; Nafari, A.H.; Siadat, S.D. The significance of microbiome in personalized medicine. Clin. Transl. Med. 2019, 8, 16.
2. Krause, T.; Wassan, J.T.; Mc Kevitt, P.; Wang, H.; Zheng, H.; Hemmje, M. Analyzing Large Microbiome Datasets Using Machine

Learning and Big Data. BioMedInformatics 2021, 1, 138–165. [CrossRef]
3. Krause, T.; Glau, L.; Jolkver, E.; Leonardi-Essmann, F.; Mc Kevitt, P.; Kramer, M.; Hemmje, M. Design and Development of a

qPCR-based Mitochondrial Analysis Workflow for Medical Laboratories. BioMedInformatics 2022, 2, 643–653. [CrossRef]
4. Liu, Y.X.; Qin, Y.; Chen, T.; Lu, M.; Qian, X.; Guo, X.; Bai, Y. A practical guide to amplicon and metagenomic analysis of

microbiome data. Protein Cell 2021, 12, 315–330.
5. Stephens, Z.D.; Lee, S.Y.; Faghri, F.; Campbell, R.H.; Zhai, C.; Efron, M.J.; Iyer, R.; Schatz, M.C.; Sinha, S.; Robinson, G.E. Big Data:

Astronomical or Genomical? PLoS Biol. 2015, 13, e1002195.
6. Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [CrossRef]
7. Krause, T.; Jolkver, E.; Mc Kevitt, P.; Kramer, M.; Hemmje, M. A Systematic Approach to Diagnostic Laboratory Software

Requirements Analysis. Bioengineering 2022, 9, 144. [CrossRef]
8. Grömminger, S. IVDR—In-Vitro-Diagnostic Device Regulation. Available online: https://www.johner-institute.com/articles/

regulatory-affairs/ivd-regulation-ivdr/ (accessed on 30 May 2023).
9. The European Parliament and the Council of the European Union. In Vitro Diagnostic Regulation. 2017. Available online:

http://data.europa.eu/eli/reg/2017/746/2017-05-05 (accessed on 30 May 2023).
10. Krause, T.; Jolkver, E.; Bruchhaus, S.; Kramer, M.; Hemmje, M. An RT-qPCR Data Analysis Platform. In Proceedings of the

Collaborative European Research Conference (CERC 2021), Cork, Ireland, 9–10 September 2021; Afli, H., Bleimann, U., Burkhardt,
D., Hasanuzzaman, M., Loew, R., Reichel, D., Wang, H., Zheng, H., Eds.; 2021.

11. Krause, T.; Jolkver, E.; Bruchhaus, S.; Kramer, M.; Hemmje, M. GenDAI—AI-Assisted Laboratory Diagnostics for Genomic
Applications. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX,
USA, 9–12 December 2021. [CrossRef]

12. Krause, T.; Jolkver, E.; Bruchhaus, S.; Mc Kevitt, P.; Kramer, M.; Hemmje, M. A Preliminary Evaluation of “GenDAI”, an
AI-Assisted Laboratory Diagnostics Solution for Genomic Applications. BioMedInformatics 2022, 2, 332–344. [CrossRef]

13. Reis, T.; Bornschlegl, M.X.; Hemmje, M. AI2VIS4BigData: A Reference Model for AI-Based Big Data Analysis and Visualization.
In Proceedings of the Advanced Visual Interfaces, Ischia, Italy, 9 June 2020; Reis, T., Bornschlegl, M.X., Angelini, M., Hemmje, M.,
Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 12585, pp. 1–18. [CrossRef]

14. Perkel, J.M. Workflow systems turn raw data into scientific knowledge. Nature 2019, 573, 149–150.
15. Kleppmann, M.; Beresford, A.R.; Svingen, B. Online Event Processing. Queue 2019, 17, 116–136. [CrossRef]
16. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and

applications. BMC Bioinform. 2009, 10, 421.
17. Balvočiūtė, M.; Huson, D.H. SILVA, RDP, Greengenes, NCBI and OTT—How do these taxonomies compare? BMC Genom. 2017,

18, 114.
18. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;

Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857.

http://dx.doi.org/10.3390/biomedinformatics1030010
http://dx.doi.org/10.3390/biomedinformatics2040042
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.3390/bioengineering9040144
https://www.johner-institute.com/articles/regulatory-affairs/ivd-regulation-ivdr/
https://www.johner-institute.com/articles/regulatory-affairs/ivd-regulation-ivdr/
http://data.europa.eu/eli/reg/2017/746/2017-05-05
http://dx.doi.org/10.1109/BIBM52615.2021.9669814
http://dx.doi.org/10.3390/biomedinformatics2020021
http://dx.doi.org/10.1007/978-3-030-68007-7_1
http://dx.doi.org/10.1145/3317287.3321612

Appl. Biosci. 2023, 2 306

19. Krause, T.; Andrade, B.G.N.; Afli, H.; Wang, H.; Zheng, H.; Hemmje, M. Understanding the Role of (Advanced) Machine Learning
in Metagenomic Workflows. In Proceedings of the Advanced Visual Interfaces, Ischia, Italy, 9 June 2020; Reis, T., Bornschlegl,
M.X., Angelini, M., Hemmje, M., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 12585, pp. 56–82.

20. Gonzalez, A.; Navas-Molina, J.A.; Kosciolek, T.; McDonald, D.; Vázquez-Baeza, Y.; Ackermann, G.; DeReus, J.; Janssen, S.;
Swafford, A.D.; Orchanian, S.B.; et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods 2018, 15, 796–798.

21. Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al.
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018,
46, W537–W544. [CrossRef] [PubMed]

22. Batut, B.; Gravouil, K.; Defois, C.; Hiltemann, S.; Brugère, J.F.; Peyretaillade, E.; Peyret, P. ASaiM: A Galaxy-based framework to
analyze raw shotgun data from microbiota. bioRxiv 2017, 183970. [CrossRef]

23. Nusrat, S.; Harbig, T.; Gehlenborg, N. Tasks, Techniques, and Tools for Genomic Data Visualization. Comput. Graph. Forum 2019,
38, 781–805.

24. Jiang, Y.; Wang, Y.; Che, L.; Zhou, Q.; Li, S. GutMeta: Online Microbiome Analysis and Interactive Visualization with Build-In
Curated Human Gut Microbiome Database. bioRxiv 2022. [CrossRef]

25. Fink, I.; Abdill, R.J.; Blekhman, R.; Grieneisen, L. BiomeHorizon: Visualizing Microbiome Time Series Data in R. mSystems 2022, 7.
26. O’Donoghue, S.I.; Gavin, A.C.; Gehlenborg, N.; Goodsell, D.S.; Hériché, J.K.; Nielsen, C.B.; North, C.; Olson, A.J.; Procter, J.B.;

Shattuck, D.W.; et al. Visualizing biological data-now and in the future. Nat. Methods 2010, 7, S2–S4.
27. Cruz, A.; Arrais, J.P.; Machado, P. Interactive and coordinated visualization approaches for biological data analysis. Briefings

Bioinform. 2019, 20, 1513–1523.
28. Kerren, A.; Schreiber, F. Network Visualization for Integrative Bioinformatics. In Approaches in Integrative Bioinformatics; Chen, M.,

Hofestädt, R., Eds.; Springer: Berlin/Heidelberg, Germnay, 2014; pp. 173–202. [CrossRef]
29. Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways

and genomes. Nucleic Acids Res. 2023, 51, D587–D592.
30. Ropinski, T.; Oeltze, S.; Preim, B. Survey of glyph-based visualization techniques for spatial multivariate medical data. Comput.

Graph. 2011, 35, 392–401. [CrossRef]
31. Suschnigg, J.; Mutlu, B.; Koutroulis, G.; Sabol, V.; Thalmann, S.; Schreck, T. Visual Exploration of Anomalies in Cyclic Time Series

Data with Matrix and Glyph Representations. Big Data Res. 2021, 26, 100251. [CrossRef]
32. Kammer, D.; Keck, M.; Grunder, T.; Maasch, A.; Thom, T.; Kleinsteuber, M.; Groh, R. Glyphboard: Visual Exploration of

High-Dimensional Data Combining Glyphs with Dimensionality Reduction. IEEE Trans. Vis. Comput. Graph. 2020, 26, 1661–1671.
33. Nazari, E.; Hasan Shahriari, M.; Tabesh, H. BigData Analysis in Healthcare: Apache Hadoop, Apache spark and Apache Flink.

Front. Health Inform. 2019, 8, 14. [CrossRef]
34. Benlachmi, Y.; El Yazidi, A.; Hasnaoui, M.L. A Comparative Analysis of Hadoop and Spark Frameworks using Word Count

Algorithm. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [CrossRef]
35. Rao, T.R.; Mitra, P.; Bhatt, R.; Goswami, A. The big data system, components, tools, and technologies: A survey. Knowl. Inf. Syst.

2019, 60, 1165–1245. [CrossRef]
36. Noghabi, S.A.; Paramasivam, K.; Pan, Y.; Ramesh, N.; Bringhurst, J.; Gupta, I.; Campbell, R.H. Samza: Stateful scalable stream

processing at LinkedIn. Proc. VLDB Endow. 2017, 10, 1634–1645. [CrossRef]
37. The Apache Software Foundation. Apache Beam. Available online: https://beam.apache.org/ (accessed on 26 February 2023).
38. Weil, S.; Brandt, S.A.; Miller, E.L.; Long, D.D.E.; Maltzahn, C. Ceph: A Scalable, High-Performance Distributed File System.

In Proceedings of the 7th Conference on Operating Systems Design and Implementation (OSDI ’06), Seattle, WA, USA, 6–8
November 2006.

39. Haines, S. Workflow Orchestration with Apache Airflow. In Modern Data Engineering with Apache Spark; Haines, S., Ed.; Apress:
Berkeley, CA, USA, 2022; pp. 255–295. [CrossRef]

40. Bernhardsson, E.; Freider, E. Luigi. Available online: https://github.com/spotify/luigi (accessed on 27 February 2023).
41. Kumar, M. Serverless Architectures Review, Future Trend and the Solutions to Open Problems. Am. J. Softw. Eng. 2019, 6, 1–10.

[CrossRef]
42. Fielding, R.T.; Taylor, R.N. Principled design of the modern Web architecture. ACM Trans. Internet Technol. 2002, 2, 115–150.

[CrossRef]
43. Gilbert, J. Software Architecture Patterns for Serverless Systems, 1st ed.; Packt Publishing Limited: Birmingham, UK, 2021.
44. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, Today,

and Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer: Cham, Switzerland, 2017;
pp. 195–216. [CrossRef]

45. Fowler, M. What Do You Mean by “Event-Driven”? Available online: https://martinfowler.com/articles/201701-event-driven.
html (accessed on 19 April 2022).

46. Bashari Rad, B.; Bhatti, H.; Ahmadi, M. An Introduction to Docker and Analysis of its Performance. IJCSNS Int. J. Comput. Sci.
Netw. Secur. 2017, 173, 8.

47. Capuccini, M.; Dahlö, M.; Toor, S.; Spjuth, O. MaRe: Processing Big Data with application containers on Apache Spark. GigaScience
2020, 9.

http://dx.doi.org/10.1093/nar/gky379
http://www.ncbi.nlm.nih.gov/pubmed/29790989
http://dx.doi.org/10.1101/183970
http://dx.doi.org/10.1101/2022.09.26.509484
http://dx.doi.org/10.1007/978-3-642-41281-3_7
http://dx.doi.org/10.1016/j.cag.2011.01.011
http://dx.doi.org/10.1016/j.bdr.2021.100251
http://dx.doi.org/10.30699/fhi.v8i1.180
http://dx.doi.org/10.14569/IJACSA.2021.0120495
http://dx.doi.org/10.1007/s10115-018-1248-0
http://dx.doi.org/10.14778/3137765.3137770
https://beam.apache.org/
http://dx.doi.org/10.1007/978-1-4842-7452-1_8
https://github.com/spotify/luigi
http://dx.doi.org/10.12691/ajse-6-1-1
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1007/978-3-319-67425-4_12
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html

Appl. Biosci. 2023, 2 307

48. Krause, T.; Zickfeld, M.; Müller, K. GenomicInsights GitHub Repository. Available online: https://github.com/aKzenT/
GenomicInsights (accessed on 9 May 2023).

49. You, E.; Vue.js Developers. Vue 3. 2023. Available online: https://vuejs.org/ (accessed on 30 May 2023).
50. NIH Human Microbiome Project. Data Portal—SRS012969. Available online: https://portal.hmpdacc.org/files/596fc2de57601

ec08a01fdee59b509b1 (accessed on 12 February 2023).
51. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.;

et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009,
25, 1422–1423. [CrossRef]

52. National Library of Medicine. NCBI BLAST: Extra Exercises Part 1: Identifying Sequences. Available online: https://guides.
nnlm.gov/tutorial/ncbi-blast-identify-and-compare-sequences-v2/single-page (accessed on 12 February 2023).

53. National Center for Biotechnology Information. The BLAST Databases—Nucleotide Collection (nt). Available online: https:
//ftp.ncbi.nlm.nih.gov/blast/db/nt.00.tar.gz (accessed on 12 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/aKzenT/GenomicInsights
https://github.com/aKzenT/GenomicInsights
https://vuejs.org/
https://portal.hmpdacc.org/files/596fc2de57601ec08a01fdee59b509b1
https://portal.hmpdacc.org/files/596fc2de57601ec08a01fdee59b509b1
http://dx.doi.org/10.1093/bioinformatics/btp163
https://guides.nnlm.gov/tutorial/ncbi-blast-identify-and-compare-sequences-v2/single-page
https://guides.nnlm.gov/tutorial/ncbi-blast-identify-and-compare-sequences-v2/single-page
https://ftp.ncbi.nlm.nih.gov/blast/db/nt.00.tar.gz
https://ftp.ncbi.nlm.nih.gov/blast/db/nt.00.tar.gz

	Introduction
	State of the Art
	Genomic Analysis Tools
	Reporting and Visualization
	Big Data Frameworks
	Distributed Storage Systems
	Workflow Management Systems
	Distributed System Paradigms
	Event-Driven Architecture
	Deployment

	Technical Architecture
	GenomicInsights Prototype
	Evaluation
	Conclusions and Future Work
	References

